

Results from the Telescope Array Experiment

Contents

FD mono spectrum
Hybrid spectrum
SD spectrum
Mass composition
AGN correlation
Photon search

IKEDA Daisuke ICRR, University of Tokyo for the Telescope Array Collaboration

The Telescope Array Collaboration

International collaboration that consists of about 120 researchers from Japan/US/Korea/Russia

T. Abu-Zayyad¹, R. Aida², M. Allen¹, R. Azuma³, E. Barcikowski¹, J.W. Belz¹, T. Benno⁴, D.R. Bergman⁵, S.A. Blake¹, O. Brusova¹,
R. Cady¹, B.G. Cheon⁶, J. Chiba⁷, M. Chikawa⁴, E.J. Cho⁶, L.S. Cho⁸, W.R. Cho⁸, F. Cohen⁹, K. Doura⁴, C. Ebeling¹, H. Fujii¹⁰, T. Fujii¹¹, T. Fukuda³, M. Fukushima⁹^{[22}, D. Gorbunov¹², W. Hanlon¹, K. Hayashi³, Y. Hayashi¹¹, N. Hayashida⁹, K. Hibino¹³, K. Hiyama⁹,
K. Honda², G. Hughes⁵, T. Iguchi³, D. Ikeda⁹, K. Ikuta², S.J.J. Innemee⁵, N. Inoue¹⁴, T. Ishii², R. Ishimori³, D. Ivanov⁵, S. Iwamoto², C.C.H. Jui¹, K. Kadota¹⁵, F. Kakimoto³, O. Kalashev¹², T. Kanbe², H. Kang¹⁶, K. Kasahara¹⁷, H. Kawai¹⁸, S. Kawakami¹¹, S. Kawana¹⁴,
E. Kido⁹, B.G. Kim¹⁹, H.B. Kim⁶, J.H. Kim⁶, J.H. Kim²⁰, A. Kitsugi⁹, K. Kobayashi⁷, H. Koers²¹, Y. Kondo⁹, V. Kuzmin¹², Y.J. Kwon⁸, J.H. Lim¹⁶, S.I. Lim¹⁹, S. Machida³, K. Martens²², J. Martineau¹, T. Matsuda¹⁰, T. Matsuyama¹¹, J.N. Matthews¹, M. Minamino¹¹,
K. Miyata⁷, H. Miyauchi¹¹, Y. Murano³, T. Nakamura²³, S.W. Nam¹⁹, T. Nonaka⁹, S. Ogio¹¹, M. Ohnishi⁹, H. Ohoka⁹, T. Okuda¹¹,
A. Oshima¹¹, S. Ozawa¹⁷, I.H. Park¹⁹, D. Rodriguez¹, S.Y. Roh²⁰, G. Rubtsov¹², D. Ryu²⁰, H. Sagawa⁹, N. Sakurai⁹, L.M. Scott⁵, P.D. Shah¹, T. Shibata⁹, H. Shimodaira⁹, B.K. Shin⁶, J.D. Smith¹, P. Sokolsky¹, T.J. Sonley¹, R.W. Springer¹, B.T. Stokes⁵, S.R. Stratton⁵, S. Suzuki¹⁰, Y. Takahashi⁹, M. Takeda⁹, A. Taketa⁹, M. Takita⁹, Y. Tameda³, H. Tanaka¹¹, K. Tanaka²⁴, M. Tanaka¹⁰, J.R. Thomas¹, S.B. Thomas¹, G.B. Thomson⁵, P. Tinyakov^{12²³}, I. Tkachev¹², H. Tokuno⁹, T. Tomida², R. Torii⁹, S. Troitsky¹², Y. Tsunesada³, Y. Tsuyuguchi², Y. Uchihori²⁵, S. Udo¹³, H. Ukai², B. Van Klaveren¹, Y. Wada¹⁴, M. Wood¹, T. Yamakawa⁹, Y. Yamakawa⁹, H. Yamaoka¹⁰, J. Yang¹⁹, S. Yoshida¹⁸,

1 University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah, USA	14Saitama University, Saitama, Saitama, Japan
2University of Yamanashi, Interdisciplinary Graduate School of Medicine and	15Tokyo City University, Setagaya-ku, Tokyo, Japan
Engineering, Kofu, Yamanashi,	16Pusan National University, GeumJeong-gu, Busan, Korea
Japan	17Waseda University, Advanced Research Institute for Science and Engineering,
3Tokyo Institute of Technology, Meguro, Tokyo, Japan	Shinjuku-ku, Tokyo, Japan
4Kinki Unversity, Higashi Osaka, Osaka, Japan	18Chiba University, Chiba, Chiba, Japan
sRutgers University, Piscataway, USA	19Ewha Womans University, Seodaaemun-gu, Seoul, Korea
6Hanyang University, Seongdong-gu, Seoul, Korea	20Chungnam National University, Yuseong-gu, Daejeon, Korea
7Tokyo University of Science, Noda, Chiba, Japan	21University Libre de Bruxelles, Brussels, Belgium
8Yonsei University, Seodaemun-gu, Seoul, Korea	22University of Tokyo, Institute for the Physics and Mathematics of the Universe,
9Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan	Kashiwa, Chiba, Japan
10Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan	23Kochi University, Kochi, Kochi, Japan
11Osaka City University, Osaka, Osaka, Japan	24Hiroshima City University, Hiroshima, Hiroshima, Japan
12Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia	25National Institute of Radiological Science, Chiba, Chiba, Japan
13Kanagawa University, Yokohama, Kanagawa, Japan	26Ehime University, Matsuyama, Ehime, Japan

Telescope Array Experiment

Energy Spectra

Energy Spectra (FD monocular on MD station) Aperture (km²sr) 10 **Monocular Energy Spectrum from Middle Drum (MD) Detector** 14 refurbish HiRes-1 telescopes HiRes1 Mono TAMD mono processing is identical to HiRes-1 monocular data analysis 1019 10²⁰ E³J (eV²s^{.1}m² str^{.1}) 0₅₂ Energy (eV) COLON Same program set, event selection, cuts Using the same "average" atmospheric model (aerosol VAOD=0.04) Differences telescope location and 10² pointing directions Thresholds (~20% lower TA Middle Drum Mono than HiRes-1) HiRes1 Man **Preliminary MD** HiRes2 Mon spectrum in good agreement with 10²³ 10¹⁹ 10²⁰ 1018 HiRes. Log₁₀E (eV)

•

•

Spectrum from Hybrid analysis: Overview

•Geometry: Hybrid

•Energy: FD

Data:

•date: May/27/2008 - Sep/28/2009 (~1.5years)

•BR + LR (new telescopes) with SDs

- •Good weather days
- •1978 events (FD-SD timing coincidence <200us)

•Cut condition

•Xmax has to be observed.

•Zenith angle is less than 45degrees

MC:

•Air shower:

- •COSMOS, proton, QGSJET-II
- •Slope: -3.1
- Isotropic distribution

•Detector :

- •All of calibration constant with time dependence
- •Simulate trigger, front-end electronics, and DAQ

•Aperture / Exposure

Reconstruction for Hybrid events Geometry

Reconstruction for Hybrid events:

Primary Energy

Energy Resolution: 8%

Primary energy is determined by FD
Inverse Monte Calro Method (IMC) with G.H. shower
Fluorescence yield:

Absolute: Kakimoto, Spectrum: FLASH
Cherenkov lights: Nerling
Measured atmosphere by LIDAR / Radiosonde
Integration of fitted G.H. function as a calorimetric energy
Correction of Missing energy from MC

Missing energy: ~8%

•Difference b/w primary energy and Integration of fitted G.H. function.

•Considered with the difference of shower shape b/w G.H. and COSMOS.

Exposure, # of events

Data/MC comparison

Hybrid Spectrum

Systematic errors

ltem	Systematic error
Fluorescence yield	12%
Detector	10%
Atmosphere	11%
Primary particle mass	5%
MC correction	3%
Total	19%

SD Spectrum Analysis: Overview

Data

- May/2008 Feb/2010
 - 1.75 years
 - ~1500km² sr yr (~AGASA 13 years)
- Cut:
 - chi2/ndf cut: 4.0
 - Border Cut > 1.2km
 - Zenith Angle Cut, 45 degrees
 - Pointing direction uncertainty: 5 degrees
 - Fractional S800 uncertainty: 0.25
- 6264 events

MC

- Simulate the data exactly as it exists.
 - Start with previously measured spectrum and composition.
 - Use Corsika/QGSJet-II events.
 - Throw with isotropic distribution.
 - Simulate trigger, front-end electronics, DAQ with Geant4.
- Analyze the MC with the same programs used for data.
- Aperture / Exposure obtained by MC
 - Test with data/MC comparison

1.1

SD event reconstruction

Fitting results

Vertical Equivalent Muon (VEM)

- Fitting procedures are derived solely from the data
- Same analysis is applied to MC
- Fit results are compared between data and MC
- MC fits the same way as the data.
- Consistency for both time fits and LDF fits.
- Corsika/QGSJet-II and data have same lateral distributions!

First Estimate of Energy

- Energy table is constructed from the MC
- First estimation of the event energy is done by interpolating between S800 vs sec(θ) lines

TA SD Resolution

Data/MC Comparisons

LDF fit χ^2/dof

DATA/MC Event Direction

DATA/MC: S800, Energy

S800

Energy

E_{SD} v.s. E_{FD} Comparison

- Energy scale is determined experimentally by FD without referring to MC
- Set SD energy scale to FD energy scale using wellreconstructed events seen by both detectors:
- 27% renormalization.
 - Systematic error 19%

(from systematic error of energy by hybrid analysis)

TA SD Spectrum

Significance of the Suppression

- Assume no GZK cutoff and extend the broken power law fit beyond the break
- Apply this extended flux formula to the actual TASD exposure, find the number of expected events and compare it to the number of events observed in log₁₀E bins after 10^{19.8}eV bin:

$$- N_{\text{EXPECT}} = 18.4 - N_{\text{OBSERVE}} = 5$$
$$PROB = \sum_{i=0}^{5} Poisson(\mu = 18.4; i) = 2.41 \times 10^{-4} (3.5\sigma)$$

AGASA, Auger, HiRes, TA Spectra

Mass Composition

Mass Composition FD stereo analysis: Data MC Comparison

Mass Composition Energy v.s. Reconstructed X_{max}

E [eV]

AGN correlation

Search for AGN Correlations

- Auger found correlations with AGN's with (57 EeV, 3.1°,0.018). 14 events scanned + 13 event test sample appeared in Science article; 2.9σ.
- HiRes data show no significant correlations.
- TA data (13 events) has 3 correlated events, 3.0 expected by chance.

Photon Search

Photon Search by SD

Event by event method

Using **shower front curvature** which is observable Monte Carlo

> CORSIKA with QGSJET-II, FLUKA and EGS4 PRESHOWER for geomagnetic field cascade Detector response : GEANT 4 $E \in [10^{18.4}, 10^{20.5}] \text{ eV}, \theta \in [0, 60]$

Data set: 2008-05-11 to 2009-10-08

 $F < 3.3 \cdot 10^{-2} \text{ km}^{-2} \text{sr}^{-1} \text{yr}^{-1}$ (95% CL) /PRELIMINARY/

Conclusions

- The Telescope Array (TA) Experiment is the largest hybrid UHECR detector in the northern hemisphere.
- The TA is operating very efficiently and collecting data.
- **SD spectrum:** consistent with HiRes spectrum (10^{18.3}eV~10^{20.2}eV)
 - Suppression at highest energy: 3.5 σ away from continued spectrum
- HiRes-refurbished MD spectrum: consistent with HiRes spectrum
- Hybrid spectrum: consistent with HiRes spectrum(10^{18.7}eV~10^{19.8}eV)
- Composition: consistent with proton (10^{18.6}eV~10^{19.3}eV)
- AGN correlation: No significance
- Photon search: Upper limit
- SD mono, FD mono, stereo, hybrid, hybrid-stereo analyses are all ongoing.

A message from TA;

We plan to hold a symposium to review # Present Status # Future Prospects of the study of UHECRs on Dec.6th-8th (tentative) in Japan.

Please join and discuss !