LAGUNA – Large Apparatus for Grand Unification and Neutrino Astrophysics

W. H. Trzaska Department of Physics, University of Jyväskylä, Finland <u>on behalf of LAGUNA collaboration</u>

ASTROPARTICLE PHYSICS the European strategy

A.D. 2008

Roadmap recommends

projects that have strong potential for taking the experimental science above the threshold of new, exciting discoveries addressing questions like the nature of dark matter and dark energy; the stability of protons and the physics of the Big Bang; the properties of neutrinos and their role in cosmic evolution; the interior of the Sun or supernovae as seen with neutrinos; the origin of cosmic rays and the view of the sky at extreme energies; and violent cosmic processes as seen with gravitational waves.

SIXTH FRAMEWORK PROGRAMME

http://www.aspera-eu.org

On the top of the recommendation list

- Next-generation underground Megatonscale detector for the search for
 - proton decay,
 - neutrino astrophysics
 - investigation of neutrino properties.

This device is LAGUNA detector – Large Apparatus for Grand Unification and Neutrino Astrophysics.

Super-K

- One of the most successful devices in modern physics
 - Discovery of neutrino oscillations
 - Solar neutrino
 measurements
 - Best upper limits on proton lifetime
- The largest running underground experiment
 - 50 000 ton H₂O
 - 1 km underground

To be a worthy successor, LAGUNA has to be:

Considered technologies

GLACIER – 100 kton of liquid argon

- Excellent tracking (TPC)
- Rapidly developing technology
- Needs more R&D (a 1 kton prototype)
- Requires 2500 m.w.e (900 m of rock)
- <u>LENA</u> 50 kton liquid scintillator
 - Big astrophysics potential (Super Borexino)
 - Robust and proven technology
 - Requires 4000 m.w.e (1400 m of rock)
- MEMPHYS 500 kton water Cherenkov
 - Competitor for Hyper K
 - Requires 3000 m.w.e (1100 m of rock)

7 European sites are being considered

<u>Pyhäsalmi</u> in Finland (mine), Fréjus in France (road tunnel), > **<u>Boulby</u>** in the UK (mine), > <u>Umbria</u> region in Italy (a virgin site), Sieroszowice in Poland (mine), Canfranc in Spain (road tunnel) and Slanic in Romania (mine).

Infrastructure Design Study

The purpose: evaluate the proposed sites and to give realistic estimates of the cost and the time needed to prepare largescale underground laboratories for LAGUNA detectors

> Supported with 1.7 M€ by the Framework Programme 7 of the EC (2008 – 2010)

Involves over 100 physicists and engineers from 10 countries.

> Quality of the rock Safety & construction cost > Seismic stability Ready infrastructure & clear legal status Presence of scientific activity on site Experienced industrial partner > Low background from nuclear power plants

Reduces construction > Quality of the rock time & cost > Seismic stability Ready infrastructure & clear legal status Presence of scientific activity on site Experienced industrial partner > Low background from nuclear power plants

Cooperation between science & industry can > Quality of the rock not be taken for > Seismic stability Ready infrastructure & clear legal status Presence of scientific activity on site Experienced industrial partner > Low background from nuclear power plants

Engineering & construction challenge! > Quality of the rock > Seismic stability Ready infrastructure & clear legal status Presence of scientific activity on site Experienced industrial partner > Low background from nuclear power plants

> Quality of the r
 > Seismic stability
 > Ready infrastru
 > Presence of sci
 > Experienced industrial partner

 Low background from nuclear power plants
 Essential for geo- and diffuse supernova neutrinos

Nuclear power plants in Europe (2009)

Reactor neutrínos

Reactor:

Fuel composition: ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu -Produces electron antineutrinos -Production rate: ~2e20 GW⁻¹s⁻¹ -prop. to thermal power

Propagation through the Earth

-Neutrino oscillation -Matter effects negligible

Detection: -via inverse β-decay (E_{thr} ≈ 1.8 MeV)

Background for geo- and supernova diffusion neutrinos

Geo-v luminosity of the Earth

Effect of reactor neutrinos on Geo-neutrino background

• Geo -window

U + Th: 1.806 - 2.254 MeV
U only: 2.254 - 3.27 MeV

Neutríno Background from Power Plants based on 2009 data (Kaí Loo)

Location	Flux [$x10^9 \text{ m}^{-2}\text{s}^{-1}$]		Events (Inv. β .)
	Total	Anti-nu _e	$[10^{32} \text{ proton year}]$
Pyhäsalmi (FIN)	1.44	0.74	73
Caso (ITA)	2.10	1.07	106
Slanic (ROM)	2.41	1.25	122
Sieroszowice (POI	3.63	1.86	182
Canfranc (ESP)	5.42	2.8	275
Frejus (FRA)	11.9	6.21	645
Boulby (GBR)	25.1	10.5	1470

Measured spectra of reactor neutrinos for U-235,Pu-239 and Pu-241 were used. For U-238 calculated spectra were used.

Event rates were calculated for a KamLand-type scintillator det.

Síte examples

Slanic salt mine in Romania

- The most beautiful site
- Suitable only for GLACIER
- 1570 km from CERN

Pyhäsalmi mine in Finland

- The deepest mine in Europe
- Suitable for all: LENA, MEMPHYS
 and GLACIER
- 2288 km from CERN

Slanic site (Romania)

44 24 840

2.5

Skip Slanic

208 m below the ground level

Pyhäsalmí síte (Fínland)

Skip to Conclusions

To reach the bottom by car: 11 km serpentine

... or in 3 minutes with the elevator

At 1.4 km below the surface

Productívíty of the Pyhäsalmí míne

Productivity 2007 World Wide Zinc UG Operations (mine+mill+GA)

All 3 proposed LAGUNA detectors can be safely & <u>cost-effectively</u> located in Pyhäsalmi!

This tunnel was excavated half way (250 m) towards the proposed LENA site

HILUD

ZS1-165

Dry, room temperature conditions at the 1430m level (below the ground)

	GLACIER	LENA	MEMPYS		
CAVERN	50 – 75	40 – 85	130 - 200		
DETECTOR	380	280	580		
TOTAL	455	365	780		

Cost estímate

Summary

- LAGUNA Design Study (FP7 funded) is a very successful project and is well underway
- Feasibility of 3 detector types at 7 sites was evaluated
- We are now finalizing deliverables, adding comparison among sites, and prioritizing the sites:
 ranking list by Fall 2010 ?
- * "LAGUNA NEXT" will be submitted in November 2010
 - long baseline neutrino beam from CERN
- If the project can start in 2013, LAGUNA detectors will come into operation around 2020-2025.