

a multi-km³ neutrino detector

on behalf of the KM3NeT consortium Els de Wolf, Nikhef/University of Amsterdam

ECRS 2010, Turku, Finland

Research objectives

- Detection of neutrinos from
 - High energy gamma ray sources
 - Galactic (SNR, Micro-Quasars,)
 - Extra galactic (AGN)
 - Gamma ray bursters
- GZK neutrinos: $p\gamma \rightarrow \Delta \rightarrow n\pi^+$
- Indirect search for Dark Matter
- Earth and Marine Science measurements (not in this talk)

Plenary talk of A. Kouchner

Design study

- Detector for cosmic neutrinos of at least 5 km³
- Situated in the Mediterranean Sea
- Optimal sensitivity for Galactic sources
- Targeted budget 200-250 M€

Environmental constraints Technical constraints due to detector environment:

- Deep sea at 3-5 km depth \rightarrow tests at 600 bar
- 40-100 km off shore → long distance data transmission
- Sea water
 - sea currents \rightarrow flexible mechanical structures
 - chemically aggressive \rightarrow choice of materials
 - ⁴⁰K decay \rightarrow local coincidences required
- Weather at sea → compact sensor deployment
 Details of design in TDR at www.km3net.org

Sensor distribution strategies

Distribute sensors as uniform as possible	Concentrate sensors as much as possible on a single unit
• "Easy" deployment – many	• Extended "tower" structure
units at a time	Less wet-mateable
 Lightweight units 	connections
30m	6m

Light detection modules

Compact deployment

Deployment tests

December 2009 Un-furling "from bottom to top" February 2010 Un-furling "from top to bottom"

Optimisation

- Advantage of tower with bars
 - At low energy higher neutrino effective area
- Advantage of multi-PMT DOM
 - Excellent separation one/two photon hits
 - Looking upwards
- → Two multi-PMT DOMs at either end of a bar (field tests)

FE electronics

• Dedicated ASIC

- ToT processing
 - 1 threshold for multi-PMTs
 - Multi thresholds for single PMT

Readout/DAQ network

Readout via optical reflective modulation

- transfer up to 10 Gb/s
- timing accuracy 10-100 ps over 100 km

Vertical e/o backbone cable

- Every bar/every DOM has a single optical channel to shore
- Need vertical cable with breakout at each bar
- Two solutions:
 - "standard" armoured cable with breakout in pressure vessel
 - Pressure Balanced Oil Filled system fibres run in oil-filled hose at ambient pressure (field tests)

Facilities for sea operations

Deployment platform Delta Berenike

Cougar in its garage

Sensitivity to neutrino point sources with E⁻² spectrum (one year of observation time)

– KM3NeT sensitivity 90%CL

- KM3NeT discovery 5σ, 50% prob.
- IceCube sensitivity 90%CL
 IceCube discovery 5σ, 50% prob. (factor 2.5-3.5 above sensitivity flux; extrapolation from IceCube 40 string configuration)

| Observed Galactic TeV-γ sources F. Aharonian et al. Rep. Prog. Phys. (2008) Abdo et al., MILAGRO, Astrophys. J. 658 L33-L36 (2007) ★ Galactic Centre For Galactic sources, sensitivity of Antares/Baikal surpassed by ~ two orders of magnitude

Sensitivity as function of observation time

Declination 60° and α =-2

expected events in 5 year observation time for possible Galactic neutrino sources

Source Name	Source radius (°)	Visibility	Number of events For E _v > 5 TeV	
			Signal ν	Atm ν
RX J1713.7-3946	0.7	0.74	4-11	6.4
RX J0852.0-4622	1.0	0.84	2-6	17
HESS J1745-303	0.2	0.66	0 – 22	1.4
HESS J1626-490	< 0.1	0.91	4 - 9	1.6
Vela X	0.4	0.81	4 – 15	3.5
Crab Nebula	< 0.1	0.39	1-3	0.8

expected events (large uncertainty) for the two most energetic GRBs detected in 2008

	GRB	Signal	Background
	GRB080319B	2.6	5 x 10 ⁻⁴
	GRB080916C	2.7	5 x 10 ⁻⁴
>	100 typical GRB	12	6 x 10 ⁻²

expected events for 100 GRBs according to Waxman-Bahcall reference spectrum

mSUGRA Dark matter annihilation in the Sun

Green: models within KM3NeT detection reach Red: outside this reach

Preparatory Phase

- Production preparation \rightarrow description of production-models (PM)
 - Field tests of pre-production-models (PPM)
 - Tender rules for production-models
 - Assembly/Integration lines inclusive test equipment, HR+location requirements
- Site/footprint decision
- Governance/Legal Identity/Funding profile

Summary

- Possible to build a detector of > 5 km³
- Technology optimisation is on going
- Sensitivity better than any other detector
- For Galactic sources two orders of magnitude better than Antares/Baikal Can still be further optimised
- For W-B GRB flux a few events per year with a few neutrinos can be detected
- Dark matter: sensitivity to spin dependent interactions better than that of direct experiments
- Need to start building (taking data) \rightarrow 2013 (2014)

