Measurement of the All-Particle Cosmic Ray Energy Spectrum with IceTop

<u>F. Kislat</u>, H. Kolanoski, T. Waldenmaier, S. Klepser for the IceCube Collaboration

ECRS, Turku, August 04, 2010

Outline

IceCube and IceTop Snow Air Shower Reconstruction Determination of the Primary Energy The Energy Spectrum Outlook

August 04, 2010

IceCube and IceTop

IceTop Air Shower Array

- Currently 73 stations
- 125m triangular grid
 → Threshold 300 TeV

IceTop in 2007

- This analysis
- 26 stations

IceCube Neutrino Telescope

- Currently 79 string
- 60 DOMs per string
- DeepCore now complete

DeepCore -

- IceCube Low-Energy Extension
- 6 strings
- Integrated in IceCube
- Complete since Jan 2010

AMANDA

 Switched off and decomissioned in 2009

August 04, 2010

IceCube and IceTop

IceTop Station

IceTop Tank

- 2 Tanks
- 10m spacing
- Connected by Local Coincidence
 → Reduce noise rate
- Filled with Ice
 → Cherenkov light
- 2 Digital Optical Modules (DOMs)
- Different gains
 - \rightarrow Increase dynamic range

August 04, 2010

Snow

- Amount of snow on top of tanks changes
- Non-uniform distribution of snow
 - Accumulation due to drifting
 - Array installation during several years
- Parameterized in simulation for e^{\pm} , γ , μ

Snow

- Projection of core distribution on x-axis (IceTop 40, 2008)
- First attempt to fix this in a parametrized simulation
- New Geant4 based simulation in development
- IceTop 26 (2007) data used in this analysis less affected

August 04, 2010

Air Shower Reconstruction

 \rightarrow 4 free parameters: S₁₂₅, β , x_{core}, y_{core}

- Seeded with centre-of-gravity and plane fit
- Likelihood fit with P_{nohit} term
- Log-normal fluctuations of charges measured in tank-to-tank comparison

August 04, 2010

Dataset and Quality Cuts

- Data taken June 2007 October 2007
- Total number of events: 9'984'826
- Quality Cuts:
 - #Stations ≥ 5
 - $-2.0 \le \beta < 4.5$
 - Core **position uncertainty** less than 20m
 - Reconstructed core contained
 - Station with largest signal contained

August 04, 2010

Determination of the Primary Energy

Mean true energy ($0^{\circ} \le \theta < 30^{\circ}, 2 \le \beta < 4.5$)

• Linear fit of energy vs shower size S_{125} relation $log(S_{125}) = a + b (log(E/PeV) - 1)$

For each zenith band and for each primary composition

August 04, 2010

Determination of the Primary Energy

• All parameters used in the energy calculation $log(S_{125}) = a + b (log(E/PeV) - 1)$

August 04, 2010

Raw Energy Spectra

August 04, 2010

Detector Response

- Raw Spectra influenced by detector response → unfold
- Response for **protons**:

- Small bias at full efficiency
- ~90% efficiency for cores in fiducial area
- Resolution 0.05 0.15 in log(E)

Unfolded energy spectra

Unfolded energy spectra

Summary

- A method to reconstruct the primary energy of air showers with IceTop has been developed
- Energies can be reconstructed with a resolution up to
 0.05 in log(E) ↔ ~10%
- A mixed composition yields the best agreement with isotropy (pure iron excluded)

Outlook

- Investigate systematic uncertainties
- Check absolute energy scale

August 04, 2010

Future IceTop developments

- Completion during next season \rightarrow 81 stations
- Small infill array \rightarrow extend energy range down to 100 TeV
- 3 Ways to measure composition

Thank you for your attention!

Air Shower Reconstruction

- Combined likelihood fit of charges and times
- Assuming lognormal charge fluctuations
- Likelihood function with P_{nohit} term:

$$L = L_q + L_0 + L_t$$

 $- L_q = Charge likelihood: log-normal distribution of charges$

$$L_{q} = -\sum_{i} \frac{\left(\log(S_{i}) - \log(S_{\text{fit}}^{(i)})\right)^{2}}{2\sigma_{q}(S_{\text{fit}}^{(i)})^{2}} - \sum_{i} \log(\sigma_{q}(S_{\text{fit}}^{(i)}))$$

 - L₀ = No-hit likelihood: Probability that a station (2 tanks!) does not trigger for a given expectation value

$$L_{0} = \sum_{j} \log(1 - P_{\text{hit}}^{(j)^{2}})$$
$$P_{\text{hit}}^{(j)} = 1 - \frac{1}{\sqrt{2\pi\sigma_{0}}} \int_{-\infty}^{S_{thr}} \exp\left(\frac{(\log(S_{j}) - \log(S_{\text{fit}}^{(j)})^{2})}{2\sigma_{q}(S_{\text{fit}}^{(j)})^{2}}\right) d\log S_{j}$$

– L_t = Time likelihood: Fit a curved shower front

August 04, 2010

Effects of the Quality Cuts

August 04, 2010

