ECRS 2010

22nd European Cosmic Ray Symposium August 3-6, 2010, Turku, Finland

General Overview of Recent Results from the Pierre Auger Observatory

<u>Rossella Caruso</u> On behalf of the Pierre Auger Collaboration

Department of Physics and Astronomy & INFN University of Catania Catania - Italy

Experimental evidencies

• 1938: Pierre Auger measured EAS;

• 1962: John Linsley detected first cosmic ray with E>10²⁰ eV (Volcano Ranch).

Over the last 50 years detected few tenths events with E >10²⁰ eV by:
Volcano Ranch: (New Mexico,USA-1962) Haverah Park: (UK, 1970)
Yakutsk: (Siberia, 1989)
Fly's Eye: (Utah -USA, 1991)
AGASA: (Japan, 1993).
HIRES: (Utah -USA, 1997)

• 1991: Fly's Eye (fluorescence technique) measures first longitudinal profiles and the highest-energy event: E=3.2 x 10²⁰ eV;

•<u>Since 2004</u>: Pierre Auger Observatory (first experiment with hybrid technique)

Present (still!) physics issues:

➢ Is there an end to the cosmic ray spectrum (GZK cutoff) ?
Are the sources local (<100 Mpc)?</p>

Where do UHECRs come from? Anisotropy and sources.

What is the primary nature of UHECR particles? Nuclei? Protons ? Gamma rays? Neutrinos? Or...?

Do we understand air shower physics at ultra high energies?

The Pierre Auger experiment

• Milestones:

1992: proposed by J.Cronin & A.Watson,2004: start of installation and data taking,2008: completion of the Southern Observatory

International Collaboration

> 280 researchers from over 70 istitutions and 17 countries: Argentina, Australia, Bolivia, Brazil, Czech Republic, France, Germany, Italy, Mexico, Netherlands, Poland, Portugal, Slovenia, Spain, U.K., U.SA., Vietnam

Total sky coverage:
 Northern-hemisphere → USA
 Southern-hemisphere → Argentina

- Hybrid detector technique
- Very high performances:

High statistics, long duration Data taking during installation Good geometrical and energetic resolution

Pierre Auger Southern Observatory

The surface station

- water Cherenkov cylindrical tank
- 100% (24 hours) duty cycle
- stand-alone unit
- max 10 W power consumption
- 10 bit, 40 Mhz FADC
- large dynamic range (1-100 particles/µs)

3 (9"diameter) Photonis phototubes

Battery box

Communication + GPS antennas

Solar panels and

eletronics box

10 m² × 1.2 m polyethilene tank

he Fuorescence telescope

PMT Camera

> Front-end electronics

<u>Airro</u>

The Fuorescence telescope

The method of FD-SD intercalibration

SD Energy calibration with a subset of "golden" hybrids events

QUESTION: End to the cosmic ray spectrum? (Greisen, Phys. Rev. Lett., 16 (1966) 748)

or first estimate of the Primary Cosmic Ray Energy Spectrum and its suppression

ANSWER: XES

The flux is strongly suppressed above 4x10¹⁹ eV
 A single power law hypothesis rejected with significance > 20 σ
 A break in the power law ("ankle") observed at 3x10¹⁸ eV

P.Auger Collaboration Phys.Lett.B 685(2010) 239 P.Auger Collaboration Phys.Rev.Lett.101,061101(2008)

The Hybrid + SD energy spectrum

Data sample:

- Auger Hybrid: ≃1700 events, November 2005 May 2008
- Auger SD: > 35000 events, January 2004 December 2008, ϵ = 12790 km²sr yr

Energy uncertainty from the calibration curve:

- 7% at 10 EeV
- 15 % at 100 EeV

Overall systematic uncertainty on the absolute energy from FD: 22% (14% from the fluorescence yield!)

13

The combined Auger spectrum

Use of a maximum likelihood method to combine the two FD and SD spectra

The combined Auger spectrum

Comparison with the HiRes spectrum

QUESTION: Where do UHECRs come from?

or are their sources within our cosmological neighbourhood? Anisotropy studies on small and large scale needed

ANSWER: We don't know yet,but

No excess localized around the Galactic Centre
 First evidence of anisotropy in arrival directions E>60 EeV

P.Auger Collaboration, Astropart. Phys. 27(2007)244P.Auger Collaboration, Science 318(2007)339P.Auger Collaboration, Astropart. Phys. 29(2008)188P.Auger Collaboration, submitted Astr.Phys. (June, 26 2010)

Search for excess of UHECRs from GC

Data sample:

- January1, 2004 March 30, 2006
- 79265 SD events with θ<60°, 10^{17.9}eV<E<10^{18.5}eV
- 3439 FD events with θ <75°, E>10¹⁷eV
- AUGER = 4 AGASA, AUGER = 10 SUGAR

Determination of background from isotropic cosmic rays with 2 methods

3

2

No significant excess!
2116 observed events
2160, 2170 expected for flat distribution

Correlation with nearby extra-galactic objects

Monitoring the correlation signal

First scan (14 events) gave: ψ < 3.1°, z < 0.018 (75 Mpc) and E > 56 EeV→P_{ISO}=21% >At the present, 38% (21/55) events correlate with AGNs against 21% expected for the isotropy (Nature? catalog?)

BUT the signal is still incompatible with isotropy at 99.7% c.l.

QUESTION: What is the composition of UHECRs?

Or are cosmic rays heavy or light nuclei? Or do we understand air shower physics at ultra-high energies?

Change in the elongation rate around the ankle: transition from galactic to extra-galactic cosmic rays?

> A gradual increase of the mass up to E = 59 EeV: towards a heavier composition at higher energies?

P.Auger Collaboration, Phys.Rev.Lett. 104,091101(2010)

Mass composition and its observables

Elongation rate

 Assuming Heitler's (1954) model and superposition model (Gaisser 1982): "A nucleus of energy E and mass A is equivalent to A independent protons of energy E/A"

$$| \langle X_{\max} \rangle = \alpha (\ln E - \langle \ln A \rangle) + \beta$$

α, β model-dipendent coefficients

CAVEAT: the intepretation depends on the hadronic models!

RMS (X_{max})

<u>Measurement of X_{max} for EAS > 10¹⁸ eV</u>

- Data sample: 3754 hybrid events, December 2004-March 2009
- X_{max} resolution estimated by MC simulations: ≈ 20 g/cm²
- Systematics $\leq 13g/cm^2$ for X_{max} and $\leq 6 g/cm^2$ for RMS(X_{max})

 $D_{10} = 106^{+35}_{-21} \text{ g/cm}^2/\text{decade at } \text{E} < 10^{18.24 \pm 0.05}$ $D_{10} = 24\pm3 \text{ g/cm}^2/\text{decade at } \text{E} > 10^{18.24 \pm 0.05}$ Xmax RMS

QUESTION: Are there UHE photons in our data?

Or search for primay photons and the evaluation of the photon fraction

ANSWER: No photons!

first and only upper limit >10 EeV with fluorescence technique
 upper limit with SD improves bounds from other experiments
 the results put STRONG constraints on TOP-DOWN models

P.Auger	Collaboration	Astrop.Phys.	31	(2009)	399
P.Auger	Collaboration	Astrop.Phys.	29	(2008)	243
P.Auger	Collaboration	Astrop.Phys.	27	(2007)	155

Discriminating observables

Direct observation of the shower longitudinal profile

Auger Collab.Astr.Phys.27(2007)155

deeper depth of shower maximun X_{max}

SD

FADC-time

Direct observation of the shower lateral profile

Auger Collab. Astrop. Phys. 29 (2008) 243

For a smaller height H (larger X_{max}):
larger delays at r
i.e. smaller radius of curvature R;
larger spread of arrival times over ΔH₄

i.e. larger signal risetime;

Upper limit on the photon fraction

<u>Conclusions</u>

Pierre Auger Observatory completed in 2008 and in data taking so far.

The power of hybrid technique: joined use of fluorescence telescopes and surface stations

About 6 years of data (million cosmic ray events) acquired and analysed.

Unique results on Energy Spectrum, Mass Composition, Anisotropy on small and large scale, Photon and tau Neutrino Upper Limits.

> No exhaustive answers, open and intriguing questions still present...

But coming soon new results: we are only waiting for new so rare events and we will go on collecting data...for the next 15 years!!