The cosmic ray energy spectrum in the range 10¹⁶ - 10¹⁸ eV measured by KASCADE-Grande

Mario BERTAINA Torino University & INFN, Italy

22nd European Cosmic Rays Symposium, Turku Finland, August 3rd – 6th 2010

KASCADE-Grande Collaboration

Universität Siegen Experimentelle Teilchenphysik P. Buchholz, C.Grupen, **D.Kickelbick, S.Over**

Institut für Kernphysik & Institut für Experimentelle Kernphysik **KIT - Karlsruhe Institute of Technology**

W.D.Apel, K.Bekk, J.Blümer, H.Bozdog, F.Cossavella, K.Daumiller, P.Doll, R.Engel, J.Engler, M.Finger, H.J.Gils, A.Haungs, D.Heck, T.Huege, P.G.Isar, D.Kang, H.O.Klages, K.Link, M.Ludwig, H.-J.Mathes, H.J.Mayer, M.Melissas, J.Milke, S.Nehls, J.Oehlschläger, N.Palmieri, T.Pierog, H.Rebel, M.Roth, H.Schieler, F.Schröder, H.Ulrich, A.Weindl, J.Wochele, **M.Wommer**

http://www-ik.fzk.de/KASCADE-Grande/

KASCADE-Grande = <u>KA</u>rlsruhe <u>Shower</u> <u>Core</u> and <u>A</u>rray <u>DE</u>tector + Grande and LOPES

Measurements of air showers in the energy range $E_0 = 100 \text{ TeV} - 1 \text{ EeV}$

Motivations for the KASCADE-Grande experiment

The range $10^{16} - 10^{18}$ eV is crucial for different reasons:

- complete "knee" studies
- investigate galactic-to-extragalactic transition
- hadronic interactions
- anisotropies

KASCADE-Grande features and performances

KASCADE:

- → energy range 10¹⁴ 10¹⁶ eV
- → 252 detector stations over 200x200 m²

→ in a station: measurement of e and µ separately with two co-located types of detector scintillators

Grande:

- → 37 detector stations 10 m² each spread over 700 x 700 m²
- → in a station: measurement of all-charged e + µ
- → 18 hexagonal clusters. 7 out-of-7 coincidence triggers data acquisition

Upper view and Bottom view of a Grande station

A standard event

- Azimuth: 28.4°

Apel et al. NIMA 620 (2010) 202-216

Cross-check between KASCADE and Grande

Apel et al. NIMA 620 (2010) 202-216

Good agreement between the reconstruction accuracies of the 2 detectors DATA Arrival direction accuracy <1° events 140 arrival direction accuracy [deg] 1.6 1.4 120 1.2 100 80 0.8 Rayleigh fit 60 0.6 40 0.4 20 0.2 0<mark>0</mark> 0≝ 5.8 3.5 6.6 6.8 0.5 1 1.5 2 2.5 3 6 6.2 6.4 7.2 $δ_{\alpha}$ [deg] log₁₀(N_{ch}) KASCADE N_{ch} accuracy: systematics < 10% Core position accuracy: < 8m Mean Value and RMS of Nch - Nch 0.3 core position accuracy [m] (N_{ch}G-N لا ہے N 0.2 Ð. ф O.1 ÷ 😐 ۰. -0. Mean value RMS -0.2 2 -0.3<u>"</u> 0∟ 5.8 6.2 6.4 6.6 6.8 6 6.2 6.4 6.6 6.8 7 7.2 log10(Nch) KASCADE log₁₀(N_{ch}) KASCADE Apel et al. NIMA 620 (2010) 202-216

Muon reconstruction (from simulation QGSjet II & FLUKA)

- 1173 days of effective DAQ time.
- Performance of reconstruction and detector is stable.
- θ < 40°
- Exposure: 2 ·10¹⁷ cm² · s · sr

Reconstruction of the energy spectrum

We use three different methods:

- •N_{ch} as observable
- $\bullet N_{\mu}$ as observable

•Combination of N_{ch} and N_{μ} as observables

Cross check of reconstruction procedures
Cross check of systematic uncertainties
Test sensitivity to composition
Cross check of validity of hadronic interaction models

If not explicitly mentioned in the following CORSIKA QGSjetII/FLUKA interaction model is used

*additional method to reconstruct the energy spectrum employs the particle density at 500 m (S500) (see G. Toma's poster on Thursday's morning - Session 4) ¹¹

Pro & cons of the methods

 $N_{ch} \mbox{ or } N_{\mu} \mbox{ alone:}$

- Constant intensity cut method
- Correction for atmospheric attenuation is model independent
- Calibration function QGSjet II: shower size (N_{ch} or N_{μ}) vs E
- Composition dependent

N_{ch} & N_{μ} combined:

- Composition independent
- Correction for atmospheric attenuation is model dependent
- Calibration function is N_{ch} - N_{μ} vs E

The Constant Intensity Cut Technique

$$N_{ch(\mu)}(\theta_{ref}) = N_{ch(\mu)}(\theta) \exp\left[P(\theta_{ref}) - P(\theta)\right]$$

Shower size is normalized at a specific angle (around 20 deg.)

DATA

Check of resolutions and systematics using MC simulations

SIMULATIONS

Effect of Hadronic interaction model: EPOS data treated as exp. data and analyzed using QGSjet II

Experimental data

Bin 1
$$0.0 < \theta < 16.7$$

Bin 2 $16.7 < \theta < 24.0$
Bin 3 $24.0 < \theta < 29.9$
Bin 4 $29.9 < \theta < 35.1$
Bin 5 $35.1 < \theta < 40.0$

Table of systematics on the flux

Source of uncertainty	10 ¹⁶ eV	10 ¹⁷ eV	10 ¹⁸ eV
	(%)	(%)	(%)
Intensity in different angular bins (attenuation)	10.2	9.3	13.0
Calibration & composition	10.8	7.8	4.4
Slope of the primary spectrum	4.0	2.0	2.1
Reconstruction (shower sizes)	0.1	1.3	6.6
TOTAL	15.4	12.4	14.7
Other uncertainties	%	%	%
Sudden knee structures (extreme cases)		<10	
Hadronic interaction model (EPOS-QGSjet)	-5.4	-12.3	-9.5
Statistical error	0.6	2.7	17.0
Energy resolution (mixed primaries)	24.7	18.6	13.6

Comparing the 3 methods (dl/dE x E³)

Residual plot

 $F_{test} = (\chi^2_{single power law} / m) / (\chi^2_{function} / n), \text{ with } m,n = ndf \text{ single power-law, function}$ Variance = 2n²(m+n-2) / m(n-2)²(n-4)

Significance in units of the standard deviation = F_{test} / $\sqrt{Variance}$

Comparison with KASCADE & EAS-TOP

The all-particle energy spectrum

Towards the composition

- •The Energy spectrum shows interesting structures.
- •The composition analysis is crucial to try to understand their origin.
- The composition analysis is under study using different approaches (all based on N_{ch}-N_μ observables and QGSjet model) like we did for the Energy spectrum to have a coherent result and check systematics for each technique:
 - K parameter
 - Separation in light & heavy spectra
 - KNN technique
 - $N_{\mu}\!/N_{ch}$ distributions in bins of N_{ch}
 - unfolding

Conclusions

KASCADE-Grande has collected high quality data in the region $10^{16} - 10^{18}$ eV region which will be the basis to look for the iron knee and the galactic-extragalactic transition in the cosmic ray spectrum

Recent results of Kascade-Grande regarding the all-particle energy spectrum:

•Agreement with KASCADE & EAS-TOP results at the threshold

- Agreement between different reconstruction approaches
- •No single power law
- •Structures at the threshold and around 10¹⁷ eV

Medium or heavy composition is preferred assuming QGSjetII model

Work is in progress for the composition studies using different approaches:

PLEASE STAY TUNED!