

22° European Cosmic Ray Symposium

COSMIC RAY PHYSICS BY THE ARGO-YBJ EXPERIMENT

A. Surdo

INFN - Sezione di LECCE on behalf of ARGO-YBJ collaboration

Outline

- Detector Layout
- The Moon Shadow
- Anti-p/p ratio
- Cosmic ray spectrum
- p-p cross section
- Cosmic ray anisotropy

ARGO-YBJ experiment

An unconventional EAS-array exploiting the full coverage approach at very high altitude, with the aim of studying

Longitude 90° 31' 50" East Latitude 30° 06' 38" North

✓ VHE γ-Ray Astronomy
✓ Gamma Ray Burst Physics
✓ Cosmic Ray Physics

and the state of the

TUTUT

90 Km North from Lhasa (Tibet)

4300 m above the sea level

High Altitude Cosmic Ray Observatory @ YangBaJing

APCO II

The ARGO-YBJ experiment

International Collaboration:

✓ Chinese Academy of Science (CAS) ✓ Istituto Nazionale di Fisica Nucleare (INFN)

INFN and Dpt. di Fisica Università, Lecce INFN and Dpt. di Fisica Universita', Napoli INFN and Dpt. di Fisica Universita', Pavia INFN and Dpt di Fisica Università "Roma Tre", Roma INFN and Dpt. di Fisica Università "Tor Vergata", Roma INAF/IFSI and INFN, Torino INAF/IASF, Palermo and INFN, Catania

HeBei Normal Unversity, Shijiazhuang IHEP, Beijing Shandong University, Jinan South West Jiaotong University, Chengdu Tibet University, Lhasa Yunnan University, Kunming

Detector status

Detector completely installed since 2007 (central carpet + guard-ring, 153 clusters)

Data taking

Since July 2006 with the central carpet Since November 2007 with the guard-ring

Setup for analog charge readout installed on central carpet (130 cl) Currently in data taking (Trigger ≥ 73 hits/cl)

Operational modes

Shower mode

Inclusive Trigger: N_{pad} > 20 within 420ns on the central carpet

 \Rightarrow rate ~ 3.6 kHz (~220 GBytes/day)

Detection of Extensive Air Showers (direction, size, core ...)

Aims: cosmic-ray physics (threshold ~ 1 TeV) VHE γ-astronomy (threshold ~ 300 GeV) gamma-ray bursts → Session 6 (S.Vernetto)

Scaler mode

counting rates (\geq 1, \geq 2, \geq 3, \geq 4 coincidences) for each cluster

Aims: detector and environment monitor flaring phenomena (gamma ray bursts, solar flares) with a threshold of few GeV → Session 2 (P.Salvini)

Shower mode:

Space pixel: $7 \times 62 \text{ cm}^2$ (single strip) Time pixel: $56 \times 62 \text{ cm}^2$ (8 ORed strips = 1 Pad) Time resolution: $\approx 1 \text{ ns}$

The size of pixels, the time resolution and the full coverage allow event reconstruction with unprecedent details

Real events !!

Moon shadow & angular resolution

The Moon shadow

A deficit in the cosmic ray flux is expected from the Moon direction.

- \succ Size of the deficit \Rightarrow angular resolution
- \succ Position of the deficit \Rightarrow pointing accuracy

Geomagnetic Field: positively charged particles are deflected towards the West

$$\Delta \theta \approx \frac{Z \times 1.6^{\circ}}{E \,[\text{TeV}]}$$

The deflection depends on the primary energy➤ West displacement ⇒ Energy calibration

All data: 2006 \rightarrow 2009

 $N > 100 \quad \theta < 50^{\circ}$

 $RMS \simeq \sigma_1$

The deficit surface is the convolution of the PSF of the detector and the widespread Moon disc:

ECRS 2010

 $\mathbf{2}$

 $\frac{R}{2\sigma}$

Moon Shadow analysis

The Sun shadow

✓Measuring the Interplanetary Magnetic Field

- ✓Exploring the Solar Magnetic Field
- ✓The deficit significance and position correlated with solar activity

At present, particularly quiet phase between 2 solar cycles

Data set: 2007 – 2009

 $N_{hit} > 100$ Zenith $< 50^{\circ}$

Observed N-S displacement of the shadow from the Sun position mostly due to the IMF (measuring such field)

 Modulation caused by SMF (depending on the solar activity)

p/p ratio at TeV energies

Using data on Moon shadow, limits on antiparticle flux can be derived.

Protons are deflected towards West, antiprotons are deflected towards East \rightarrow 2 symmetric shadows expected.

If the displacement is large and the angular resolution small enough we can distinguish between the 2 shadows.

If no event deficit on the antimatter side is observed, an upper limit on antiproton content in Cosmic Rays can be calculated.

Upper limit on \overline{p}/p by ARGO-YBJ

Median E ~2 TeV: 90% C.L. Upper limit 4.2% Median E ~5 TeV: 90% C.L. Upper limit 7.4%

Light-component spectrum of CRs

Extract the *light-component* (p+He) spectrum of primary CRs starting from the measured strip multiplicity spectrum

and using a Bayesian unfolding procedure

$$\begin{split} P(E_i) &\propto \sum_{j=1}^{n_M} P(E_i \mid M_j) \cdot P(M_j) \\ P(E_i \mid M_j) &= \frac{P(M_j \mid E_i) \cdot P(E_i)}{\sum_{l=1}^{n_E} P(M_j \mid E_l \mid) \cdot P(E_l)} \\ P(E_i) &= \frac{N(E_i)}{\sum_{E'} N(E')} \qquad P(M_j) = \frac{N(M_j)}{N_{tot}} \\ N(M_j) \text{ from experimental data} \\ P(M_j \mid E_i) \text{ computed by MC simulation} \end{split}$$

A. Surdo

Light-component spectrum of CRs

Measurement of the spectrum in the energy region (5 - 200) TeV Strip multiplicity range: (500 ÷ 50000)

Flux attenuation and p-Air cross section

Shower frequency vs (sec θ -1):

$$I(\theta) = I(0) \cdot e^{-\frac{x_o}{\Lambda_{abs}}(\sec(\theta) - 1)}$$

Measure the flux attenuation

IJ,

For fixed energies and shower ages:

$$\Lambda_{abs} = k \lambda_{INT}$$

$$\sigma_{p-Air} [mb] = 2.4 \times 10^{4} / \lambda_{INT} [g / cm^{2}]$$

> k is determined by MC simulations, selecting energy and age ranges by means of the actual experimental observables (number of fired strips, hit density, lateral profile, ...)

It depends on the interaction model details, but also on the set of experimental observables, energy, ...)

ECRS 2010

Data selection

Event selection based on:

- (a) "shower size" on detector, N_{strip} (strip multiplicity)
- (b) core reconstructed in a fiducial area (64 x 64 m²)
- (c) constraints on Strip density (> $0.2/m^2$ within R_{70})

and shower extension ($R_{70} < 30m$)

N_{strip} is used to get defferent E sub-samples

R₇₀: radius of circle including 70% of hits

Full Monte Carlo simulation:

✓ Corsika showers

- ✓ QGSJET I and II, SYBILL interaction models
- ✓ GEANT detector simulation

ECRS 2010

Proton-Air cross section measurement

21

 \checkmark The log²(s) asymptotic behaviour is favoured

ECRS 2010

Next steps in the analysis

Selection improvements coming from:

- (a) More detailed informations on the shower time structure, longitudinal development and lateral density profile (LDF)
- (b) Better constraints on shower Xmax (\rightarrow lower systematics)

... also given by the RPC charge information

ECRS 2010

Analog charge read-out

Read-out of the charge induced on "Big Pads"

Strip top view ARGO-YBJ (154 CL) - Event 18180 (E) ≻ 40 33 123 62 955 羟 30 \mathcal{C} 20 10 33 10 n <u>29</u> 3 -10 -20 -30 -40 123 1.50 -20 -40 0 20 40 X (m)

Imaging the shower front structure

Strip top view

Big-Pad top view

Big-Pad 3-D view

Shower structure and LDF near the core much better studied without saturation by the charge readout system

Lateral density distribution of showers

Cosmic ray anisotropy

ARGO-YBJ detector is able to observe cosmic radiation anisotropies in all scales (both large and intermediate), at ~TeV energies

CR large scale anisotropy

ARGO-YBJ DATA: 2008 and 2009

ECRS 2010

A. Surdo

1D CR anisotropy for different energies

Intermediate scale anisotropy

ECRS 2010

Conclusions

- ✓ ARGO-YBJ detector (central carpet + guard ring) is taking data since November 2007 (duty-cycle > 90%, 3.6 kHz rate)
- ✓ Very detailed shower structure imaging, also thanks to the analog charge readout system
- ✓ Angular resolution as expected (Moon shadow)
- ✓ Several results from Cosmic Rays:
 - □ p-p cross section
 - □ Limit on antiproton flux
 - □ First measurement of CR light-component spectrum
 - □ Large and intermediate scale anisotropies