Directional correlations between UHECRs and neutrinos observed with IceCube

22nd European Cosmic Ray Symposium

Turku

August 3rd 2010

<u>Robert Lauer</u> Madalina Chera Elisa Bernardini

Correlations of UHECRs and IceCube Neutrinos

Introduction - UHECRs and neutrinos

- **IceCube** Neutrino astronomy
- **Correlation** Binned method and first results
- **Outlook** Improved methods and new data samples

Correlations of UHECRs and IceCube Neutrinos

Introduction

Ultra-high energy cosmic rays (UHECRs)

charged particles **above a few 10 EeV**:

Low influence of magnetic fields

- ⇒ arrival directions of allow to identify source regions with hadronic acceleration
- ⇒ possibly **neutrinos from p-p or p-** γ

Abraham et al. (PAO), Science, 2007

Idea: Correlation between neutrinos (direct path) and UHECR (clear signal) to boost combined significance

Search objectives:

- Efficient neutrino production in the sources?
- Limited number of strong UHECR accelerators?
- Estimation of interstellar magnetic field deflection possible?

R. Lauer

IceCube Observatory

IceCube - above the horizon

IceCube 22 strings standalone search

Correlations of UHECRs and IceCube Neutrinos

UHECR data

Pierre Auger Observatory

Status 2007: 27 events above 57 EeV

- additional events observed after August 2007 were not released for the first search but will be included in next
- Anisotropy observed at 99% CL
- Mostly covering the southern sky
- AGN correlation not regarded here

13 (stereo) events above 56 EeV

- energy threshold chosen as in PAO (corrected for calibration offset)
- No anisotropy observed
- Mostly covering the northern sky

Correlation search with 22 strings

IceCube UHE point source sample :

- 1885 events (atm. muons & neutrinos)
- declinations 50 $^{\circ}$ to + 90 $^{\circ}$

Stacking principle:

Count IceCube neutrino candidates in bins around UHECRs directions.

Comparison to randomized maps gives significance of possible excess.

⇒ Straight-forward result on degree of correlation

R. Lauer

Correlation search with 22 strings

Sensitivity calculation based on sky maps with added neutrino signals:

- assuming equal neutrino fluxes from all UHECR directions
- accounting for point spread function and declination dependence of IceCube

Magnetic deflection of UHECRs:

Position uncertainty implemented as random shifts of sources relative to UHECRs

- gaussian distance profile
- width of 3° for average shift
- effects of weaker/stronger deflections were studied

Correlations of UHECRs and IceCube Neutrinos

UHECR correlation results

Total IceCube event count

in 35 bins (3° radius):

Mean expectation from scrambled background:

excess probability:

This excess is **compatible with background fluctuations**.

Approximate neutrino flux limit per source: 0.9 x 10⁻⁸ GeV cm⁻² s⁻¹

R. Lauer

Correlations of UHECRs and IceCube Neutrinos

IceCube 40 strings

IceCube standalone point source search:

Max. excess: Dec. 15.15°, RA 113.75°

Not significant - Trial-corrected probability for a random excess of this magnitude is 18 %.

R. Lauer

Correlations of UHECRs and IceCube Neutrinos

Unbinned likelihood method

Unbinned correlation method based on likelihood maximisation:

Based on the stacking principle, **one total number of signal neutrinos and one common spectral index are fitted.**

IceCube 40 strings covers full sky: All 40 UHECRs accessible

Correlations of UHECRs and IceCube Neutrinos

Discovery potential with 40 strings

Flux per source required for a 50% chance of 5σ: **0.13 x 10⁻⁸ GeV cm⁻² s⁻¹**

equivalent to an average of 16.6 neutrinos in total from all 40 sources

Improvement compared to binned IC-22: ~ factor 7

For larger magnetic shifts: Only 15 % worse for avg. deflection twice as large

Summary and outlook

- The first high statistics all-sky correlation search between ultrahigh energy cosmic rays and neutrinos has been performed.
- The observed excess of neutrino candidates near cosmic ray directions is not significant.
- An extended search based on new IceCube data from 40 strings is in preparation, based on a likelihood approach.
- The analysis is being generalized to include the new events expected to be released soon by the Pierre Auger Collaboration.

R. Lauer

Backup Slides

R. Lauer

Correlations of UHECRs and IceCube Neutrinos

UHECR correlation results

90% containment of simulated E⁻² neutrino spectrum

Estimated energies over declination for the 60 correlated events

Colored contour shows distribution of all background events

Correlations of UHECRs and IceCube Neutrinos

Bin optimization

(for equal flux from all sources)

Bin radii optimized for

discovery potential

(fixed flux per source)

⇒ bin radius 3.0°

Bin size optimization: sensitivity

Correlations of UHECRs and IceCube Neutrinos

Bin optimization

Varying the simulated deflection

Width of distribution for generation of shifts varied between 0° and 5°

Correlations of UHECRs and IceCube Neutrinos

22 strings point source sensitivity

Correlations of UHECRs and IceCube Neutrinos

Binned search with 40 strings

Correlations of UHECRs and IceCube Neutrinos

Correlation likelihood – source term

$$S_{i,spatial}^{j}(|\mathbf{x}_{i}-\mathbf{x}_{u}^{j}|) = \frac{1}{2\pi\sigma_{i}^{2}} \int d\mathbf{x}_{s}^{j} \frac{1}{2\pi\sigma_{m}^{2}} \exp\left(-\frac{|\mathbf{x}_{s}^{j}-\mathbf{x}_{u}^{j}|^{2}}{2\sigma_{m}^{2}}\right) \exp\left(-\frac{|\mathbf{x}_{i}-\mathbf{x}_{s}^{j}|^{2}}{2\sigma_{i}^{2}}\right)$$

Magnetic deflection liceCube point spread function

Convolution of two gaussian functions:

$$S_{i,spatial}^{j}(|\mathbf{x}_{i} - \mathbf{x}_{u}^{j}|) = \frac{1}{2\pi\sigma_{conv}^{2}}\exp\left(-\frac{|\mathbf{x}_{i} - \mathbf{x}_{u}^{j}|^{2}}{2\sigma_{conv}^{2}}\right)$$
$$\sigma_{conv}^{2} = \sigma_{m}^{2} + \sigma_{i}^{2}$$

R. Lauer

Correlations of UHECRs and IceCube Neutrinos

IceCube 22 strings – Northern sky

Published in: Abbasi et al. (IceCube), Astrophys.J.701, 2009

Max. excess: Dec. 11.375°, RA 153.375° P-value: **7.2*10**⁻⁷ (pre-trial prob.)

Trial-corrected probability for a random excess of this magnitude is 1 %, i.e. not significant.

R. Lauer

Correlations of UHECRs and IceCube Neutrinos