Cosmic ray primary composition studies through the Gerasimova-Zatsepin effects of heavy nuclei at LAAS (the Large Area Air Shower experiments)

<u>A. Iyono¹</u>, H. Matsumoto¹, K. Okei², S. Tsuji², S. Ohara³, N. Ochi⁴, T. Konishi⁵, N. Takahashi⁶, I. Yamamoto¹, T. Nakatsuka⁷, T. Nakamura⁸ N. Ohmori⁸ and K. Saitho⁹

- 1 Okayama University of Science, Okayama 700-0005, Japan
- 2 Kawasaki Medical School, Kurashiki 701-0192, Japan
- 3 Nara University of Industry, Nara 636-8503, Japan
- 4 Yonago National College of Technology, Tottori 683-8502, Japan
- 5 Kinki University, Osaka 577-8502, Japan
- 6 Hirosaki University, Hirosaki 036-8561
- 7 Okayama Shoka University, Okayama 700-86011
- 8 Kochi University, Kochi 780-8520
- 9 Ashikaga Institute of Technology, Ashikaga 326-8558, Japan

22nd ECRS in Turku, Finland, 3-6 Aug. 2010

The photodisintegration of cosmic ray nuclei by Solar photons ⇒ proposed by Gerasimova, Zatsepin in 51's, 60's

Suwa (Aoyama)(95) Median-Tanco Watson(99),Epele et al., (99), Fujiwara (04),Lafebre et al.,(08)

- Processes
 - Cosmic ray heavy nuclei above 10¹⁷eV and solar photons(~1eV)
 - at the rest frame of nuclei, photon energy be Lorentz-boosted to1MeV
 - Fragment nuclei(Z/A=0.5),proton(Z/A=1),neutron(Z/A=0)
 - traveling towards the Earth and deflected by the interplanetary magnetic field
 - resulting deflections depend on their rigidities
 - At the Earth
 - Multiple and simultaneous EASs observed in the very large area

Experimental tasks

- large S Ω T, time synchronization (GPS μ sec), angular resolution
- Low threshold energy for detectors because of fragment originated EASs
- Energy resolution required to estimate the energies of primary particles

Numerical approaches to estimate GZ event rates.

assumptions

- Trajectories of fragments in Solar system magnetic fields (Akasofu-Grey-Lee) from 5AU towards to the Earth $\rightarrow 10^{-8}$ AU step with the correction of the field strength.
- Primary elements : Iron nuclei, Oxygen, He
- Photodisintegration cross section (Epele et al.)
- $J(E) = \sum_{Z} J_{z}(E) \qquad J_{z}(E) = J_{0,Z} \left[\frac{E}{E_{0}} \right]^{\gamma_{Z}} \left| 1 + \left(\frac{E}{E_{n}Z} \right)^{\gamma_{1}} \right|^{\gamma_{2}} \right|^{\gamma_{2}}$ Energy: 10¹⁶~10²⁰eV
- Energy spectrum

 $E_0 = 10^{12} \text{ eV}$ $E_p = 4.5 \times 10^{15} \text{ eV}$ $\gamma_1 = 1.9$ $\gamma_2 = 1.1$ Horandel(2003)

– GSL were used in numerical integration thistime.

the probability of GZ events η_{GZ} and expected flux ratio J_{GZ}/J (separation<2R_F)

dominated at more than 10^{17} eV but very low probabilities : $10^{-4} \sim 10^{-5}$

Numerical result :separation distance vs. primary energy

10¹⁹eV ⇒150km

Fe primary $10^{18}eV \Rightarrow 1200km$

The correlation of solar direction of fragmentation probabilities Kanai, Fujiwara (2004)

- The probabilities P
 - Enhanced at day-side and night-side

Experimental Setup of LAAS projects:

8 sets of compact EAS-array were deployed in Japan.

The baseline of arrays from 0.1km to 1000km

GZ events

- Typically, 8 plastic scintillation counters (50cm x 50cm x 5cm)
- 300 to 400 m² EAS array size at the flat roof in each campus.
- TDC signals for EAS angle determinations angular resolution ~7degree
- GPS maintained 10MHz UTC timestamp system (time resolution ~1 microsecond)

Short baseline EAS arrays in Okayama area.

Okayama Univ. (OU) to

Okayama Univ. of Science (OUS)

4 arrays in this area

- ✓ OUS—OUS ~100m
 - OUS—OU ~1000m
- ✓ GPS-synchronized timestamp
 - (1µs accuracy ; Furuno GT-77)

since 12/2002

Event rate profiles at 4 arrays

Simulation: primary energy regions

• Effective Area dependences for single array, OUS123 combinations and OU-OUS123 combinations.

Data Analysis:

to search for simultaneous and parallel EAS events

- Data period
 - 1996/Sep (2 arrays) -2007/Jan(9 arrays)
 - 65M events
- Event selection criteria
 - $E_{threshold}$ >5 PeV (>5 coincidence)
 - Baseline combinations
 - more than 100km Hirosaki U.-Okayama U.
 800km Hirosaki U.-Nara U and Kinki U.
 700km Okayama –Nara U and Kinki U.
 150km
- EAS arrival time difference (T.D.)
 - within 5 millisecond due to geographical features (considering separation elongation factor pointed out by Lafebre et al. 2008)
- EAS angular distance (A.D.)
 - within 15 degree (typical angular resolution of arrays :7degree)

Experimental results

287EAS pairs were selected among 65M events
 – within T.D. <5ms and A.D.<15deg

Time difference (T.D.) distribution of selected EAS pairs

Angular distance (A.D.) distribution of selected EAS pairs

Angular distance correlation to the Sun 287 pairs→574 EASs

- 287 pairs→574 EASs
 head-on collision of photon with nuclei in day-side and night-side
 - In the direction near the Sun, trajectory deviation became large to be detected. (Lafebre 2008)

Conclusions

- Numerical calculation have been performed for LAAS experimental setting.
- LAAS data from up to Jan. 2007 have been analyzed.
 - GZ candidates defined as T.D.<5millisecond and A.D.<15degree 287 EAS pairs were selected and analyzed for the correlation of arrival direction to the Sun.
 - T.D and A.D. distributions themselves were uniform.
 - Their were no significant GZ event enhancement in the day-side and night-side direction. The distribution still seems to be uniform, instead of GZ effect indeed.
 - Energy estimation for each EAS were not completed because of restricted array size.
- Plan
 - The new EAS array(OUS5) in Okayama Univ. of Science(2.5km distance form our campus) have started observing EAS events from Dec/2009.
 - Linsley's EAS time structure methods for EAS energy estimation with compact arrays have been implemented for LAAS EAS arrays (Poster presentation)

Linsley's EAS time structure method

- E>10¹⁶eV
 - EAS core position can not be determined by lateral structure analysis with small array(20m x 20m).
 - The outskirts of EAS will be hit to the EAS array.
 - Linsley predicted the relation between core distance r and EAS thickness σ empirically.
 - The EAS thickness measurement system were installed.
- Status
 - OUS1 array maintained with Linsley's method.
 - OUS4 array were implemented with zenith angle restrictionsystem.
 - OUS5 array started observation, located at 2.5 km distance from the OUS campus.

