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The NuMoon Experiment

• Detecting radio signals from 
UHE neutrinos and CRs 
from the Moon

• Low frequencies <150 MHz
• Phase I: Westerbork Radio 

Synthesis Telescope 
(WSRT)

• Phase II: Low Frequency 
Array (LOFAR)



Askaryan effect: 
Coherent Cherenkov emission 

• Leading cloud of electrons,   v ≈ c
  Typical size of order 10cm
  Coherent Cherenkov for ν ≤ 2-5 GHz
  cos θc =1/n ,     θc=56o     for ∞ shower length

• Length of shower, L ≈ few m
Important for angular spreading
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Spreading around Cherenkov-cone
Lunar regolith:  n ≈ 1.8

GHz

Scholten et al. 2006
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Reflection

Spreading is diminishing internal 
reflection

3 GHz100 MHz

lo freq.: signal 
from whole Moon

hi freq.: signal 
from rim of moon



Earth ionosphere: dispersion & Faraday rotation

Bandwidth limited pulse, Nyquist sampled, linearly polarized

No 
dispersion

TEC = 10



Westerbork Synthesis Radio Telescope (NuMoon phase I)

• range 113 -175 MHz
• split in four 20 MHz bands
• 11 x 25 m diameter dish
• 40 M samples/sec (PuMa2)
• full polarization information

• 2 simultaneous beams



RFI cleaning
• 16 data streams:

  2 beams 
  4 frequency channels   
  2 polarizations

• For each stream
- reduction of RFI
- de-dispersion 



Step 3: Peak 
search

• P5i: total power in a 
sliding window of 5 
bins (2 polarizations) 
in band i

• Threshold P5i > 5σ

• Allow offset for 
imperfect 
de-dispersion

• S = Σ P5i



Distribution of S (46 hours)

Regular time 
interval

Width < 12 bins

Anti-coincidence



Neutrino flux limit
No detection above 
220 kJy

Detection efficiency: 
87.5 %

46 hours of 
observation

Total syst. error 50%

90% confidence level

Flux limit for sum over 
all neutrino flavors

Results: Scholten et al. PRL 103, 1301 (2009)

Details: S.B. et al. A&A (accepted 2010)



Phase II: LOFAR
• Low Frequency Array: 36 stations of 48 HB + 

96 LB antennas each

• Antennas operate as digital telescope
• LOFAR can look in multiple directions at the same 

Low band: 10 - 80 MHz

High band: 120-240 
MHz



Location

• 18 core station
• 18 remote stations
• 8 european stations



Location

Located in Groningen:

Central Processing Facility

BlueGene 34 TFlops



multiple beams of ~0.05 dgr

• Better signal localization
• Strong anti-coincidence veto 14



LOFAR Sensitivity to neutrinos



Future sensitivities



Conclusions
• Radio detection of lunar showers 

promising technique for detection of 
highest energy particles

• NuMoon @ WSRT sets competitive limits 
on UHE neutrino flux

• LOFAR will probe WB limit > 1022 eV and 
constrain many top-down models

• Future experiments sensitive to expected 
GZK neutrino flux & CR around cutoff

Thanks for your attention!



Askaryan effect: confirmation in sand 
Experiment at SLAC with beams of photons 
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Askaryan effect: confirmation in sand 
Experiment at SLAC with beams of photons 

And 1010 e-/bunch: effective shower energies 0.06-1.10 1019 eV

1 Jy = 10-26 W/m2/Hz

Angular spread

 Z0 ~ Δc~λ/L=1/
Lν

D. Saltzberg et al
PRL 86 (2001) 2802



1. Neutrino or CR enter Moon

2. Extrapolated cross section -> interaction depth

3. Signal from hadronic cascade (~20% of energy)

4. Propagation through regolith

5. Inner reflection at surface / irregular surface

6. Refraction at surface 

     syst. error due to unknown Moon properties ~ 45%



Regolith vs. Rock

• Density of rock larger
• Competing effects: 

more attenuation, 
shallower interaction, 
shorter cascade, 
larger spread around 
cherenkov angle

• At 100 MHz net effect is 
small
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Calculations for 

  Ecr=4 1021 eV

Detection treshold: 500 Jy 
for 20 MHz bandwidth

With decreasing ν :

 - increasing area

 - increasing probability

 ∫ over surface Moon 

      D ∝ ν-3

Scholten et al. Astropart. Phys. 2006



Understanding the 
background

• Large background 
pulses

• Typically 
coincidence veto 
fails when one 
channel is noisy

• Steady signals 
removed by RFI 
mitigation, but too 
much RFI gives 
poor dynamic 
range

• Pulsed noised 
produces spurious 
peaks 
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Ultra High Energy Cosmic Rays



SKA timeline



Detection efficiency
Input pulses 

simulated with 
STEC = 10

Reconstructed 
with different 
STEC values.

Wrong value 
spreads out pulse

DE fairly constant 
when error < 20%



UHE Cosmic rays

Concern: formation effects of 
radiation field near boundary

Simulations for boundary n=1.8 to 
n=1.0

For low frequencies (~100 MHz) 
coherent signal in all directions

Cosmic ray detection is 
possible and efficient!

UHE CR limits in prep

n’=1.
8
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