Coronal Shock Acceleration of Protons and Minor Ions In Self-generated Turbulence

Battarbee, M.¹², Laitinen, T.², Vainio, R.³

European Cosmic Ray Symposium, Turku, Finland, 3.-6.7.2010

¹markus.battarbee@utu.fi ²Department of Physics and Astronomy, University of Turku, Finland ³Department of Physics, University of Helsinki, Finland

• Under what circumstances do coronal shocks efficiently accelerate particles?

- Under what circumstances do coronal shocks efficiently accelerate particles?
- What is the nature of wave-particle interactions near a shock?

- Under what circumstances do coronal shocks efficiently accelerate particles?
- What is the nature of wave-particle interactions near a shock?
- How do CME/shock properties affect particle entrapment?

- Under what circumstances do coronal shocks efficiently accelerate particles?
- What is the nature of wave-particle interactions near a shock?
- How do CME/shock properties affect particle entrapment?
- What is the evolution of swept up minor ion populations?

Upstream simulation of particles

- Numerically solve the Fokker-Planck equation
- Single particle propagation using guiding centre approximation in 1D
- Pitch-angle independent resonance condition $f_{res} = f_{cp} \frac{u_{sw} + v_A}{v}$
- Scattering frequency $\nu = \pi^2 f_{cp} \frac{f P(f)}{B^2}$
- Focusing due to adiabatic invariance, isotropic scattering from turbulence

Upstream simulation of turbulence

- Waves transported as spectra with $\frac{\partial P}{\partial t} + \frac{Bv_A}{V} \frac{\partial}{\partial r} \left(\frac{V^2}{Bv_A} P \right) = \Gamma P + \frac{\partial}{\partial f} D_{ff} \frac{\partial P}{\partial f}$
- Wave growth from particle scatterings: $\Gamma = \pi^2 f_{cp} \frac{pS_p(r,p,t)}{nv_A}$
- Ad-hoc linear frequency diffusion mimics wave-wave interactions $D_{ff} = \frac{V}{1 \text{ AU}} f_b^{-2/3} f^{8/3}$ which modify the spectral shape to a broken power law

Shock & simulation parameters

- Step-profile shock, plasma compression ratio 4
- Parallel shock
- Shock-normal velocity of $V_s = 1250$, 1500 or 1750 km/s.
- Cross helicity of -1 (upstream) and 0 (downstream).
- Particle mean free path (10 keV P+) is 1 AU.

Injected particles

Model for realistic particle injection

- Radial density & temperature profiles from Cranmer & Ballegooijen, 2005.
- Simulation follows a shock through the solar corona (from 1.5 R_{\odot}), sweeping up ambient particles.
- Ambient particle velocities follow a kappa distribution: $\kappa = 6...2$ between $1.5...3 R_{\odot}$.

Injected particles

Model for realistic particle injection

- Radial density & temperature profiles from Cranmer & Ballegooijen, 2005.
- Simulation follows a shock through the solar corona (from 1.5 R_{\odot}), sweeping up ambient particles.
- Ambient particle velocities follow a kappa distribution: κ = 6...2 between 1.5...3 R_☉.

Minor ion abundances

- P+: $1 \cdot 10^{-2}$ of given density
- He3: 1,6·10⁻⁵ of P+
- He4: 0,04 of P+
- Fe56: 1,0·10⁻⁴ of P+
- Fe is partially ionized to Q = 14

Model velocities & temperature

Sample κ -distributions

SAC

Proton intensities, 1.0 magnitude intervals $(V_s = 1500 km/s, 550 s)$

000

Minor ion intensities

Log Wave power, 0.5 contour interval $(V_s = 1500 km/s, 550 s)$

 $\mathcal{O} \land \mathcal{O}$

E ∽QQ

Results

Expectations

- A faster shock leads to increased acceleration.
- Increased acceleration leads to increased trapping and a *bootstrapped process*.

Results

Expectations

- A faster shock leads to increased acceleration.
- Increased acceleration leads to increased trapping and a *bootstrapped process*.

Questions

- How hard are the particle spectra?
- How is the maximum attained energy (per nucleon) proportional to the charge/mass ratio?
- How does the source ion abundance correlate with accelerated particles?

Particle spectra ($V_s = 1250 km/s$, 550 s)

E Dac

Particle spectra ($V_s = 1500 km/s$, 550 s)

Particle spectra ($V_s = 1750 km/s$, 550 s)

Spectra & power laws $(V_s = 1750 km/s)$

1 9 9 P

Spectra, power laws & energy cutoffs

 $\mathcal{O}\mathcal{A}\mathcal{O}$

Energy cutoffs

SEP power laws & ion abundances

Power laws, averaged over time steps 549...559

	P+	P(suprathermal)	He3	He4	Fe
$V_s = 1250 km/s$	-2.77	-2.70	-2.76	-2.78	-2.90
$V_s = 1500 km/s$	-2.00	-1.94	-1.94	-1.90	-1.93
$V_s = 1750 km/s$	-1.63	-1.63	-1.57	-1.50	-1.50

Accelerated ion abundances relative to proton abundances

	P+	He3	He4	Fe
Seed pop	1.0	1.6-05	0.04	1.0e-4
$V_s = 1250 km/s$	1.0	1.16e-05	0.031	1.18e-4
$V_s = 1500 km/s$	1.0	1.15e-05	0.030	1.17e-4
$V_s = 1750 km/s$	1.0	1.13e-05	0.029	1.10e-4

Conclusions

- A high shock-normal velocity leads to greater cutoff energies and harder particle spectra.
- Ion acceleration cut-off energies scale roughly as $(Q/m)^n$, $n \lesssim 1$.
- The accelerated particle population has an increased abundace of Fe and decreased abundance of He3 and He4.
- At high energies, He4 is cut off before He3, which leads to an "enrichment" of He3.

Conclusions

- A high shock-normal velocity leads to greater cutoff energies and harder particle spectra.
- Ion acceleration cut-off energies scale roughly as $(Q/m)^n$, $n \lesssim 1$.
- The accelerated particle population has an increased abundace of Fe and decreased abundance of He3 and He4.
- At high energies, He4 is cut off before He3, which leads to an "enrichment" of He3.

Future work

- What can we expect to detect far away from the shock (eg. 0.3...1 AU)?
- What can parameter studies of eg. oblique shocks reveal?

