Cosmic Rays in the Knee Energy Range

The "first knee"

measured N_{ch} spectra

hodoscope counters in a 20x20 m² array

"the observed spectrum is a superposition of the spectra of particles of galactic and metagalactic origin"

G.V.Kulikov, G.B.Khristiansen, Soviet Physics JETP 35(8) 3 March 1959

2-6/8/2010 Turku-Finland

Direct or indirect measurement

Acceleration of cosmic rays in supernova remnants Propagation through galaxy (B≈3μG?)

Galactic cosmic rays

Questions to the knee energy range

Engel, Blümer, Hörandel: Progress in Particle and Nuclear Physics 63 (2009) 293

Questions to the knee energy range

Overlap direct-indirect measurements? Hadronic interaction models? **Rigidity dependent knee?** Sharpness of knee? **Composition at knee?** Iron knee? **End of Galactic Spectrum?** Second knee? **Transition galactic – xgalactic? Anisotropy?**

Engel, Blümer, Hörandel: Progress in Particle and Nuclear Physics 63 (2009) 293

Andreas Haungs

Direct measurements

 Acceleration by Supernova Remnants, only?

CREAM

Cosmic Ray Energetics And Mass

- Measurements of elemental spectra for Z = 1 – 26 nuclei
- Energy ranges from 10¹¹ to 10¹⁵eV
- CREAM-III 12/07 1/08 (29 days)
 Five succesful flights 2004 2010
 ~ 156 days cumulative exposure
- Combines calorimeteric and transition radiation detector (TRD) techniques
- Data shows p and He spectra different in slope
- p and He spectra show hardening
- Different type of source or acceleration mechanism?

Large-Scale Anisotropy: MILAGRO

- **7** years: **10**¹¹ events.
- Map dominated by charged cosmic rays of ~10 TeV
- Two regions of excess 15.0σ and 12.7σ.
- Nearby accelerator? Local magnetic fields?
- Also seen by Super-Kamiokande and ARGO!

ICECUBE

- under-ice (southpole) Cherenkov neutrino detector
- 22 strings: 4.3 billion muons
- Map dominated by charged cosmic rays of ~20 TeV
- Continuation of northern hemisphere anisotropy
- Not by motion of solar system or by heliospheric magnetic field!
- Feature of local interstellar or galactic magnetic fields?
- Nearby source (such as Vela)?

Abbasi, R. et al, The Astrophysical Journal Letters 718, L194, 2010

KASCADE

KArlsruhe Shower Core and Array DEtector

• Since 1995

Large number of observables: electrons, muons@4 thresholds, hadrons

2-6/8/2010 Turku-Finland

Model independent multi-parameter analysis

Use of three observables:

- high-energy local muon density -> energy estimator
- Total muon number and electron number -> mass estimator

- KNEE CAUSED BY DECREASING FLUX OF LIGHT ELEMENTS
- Do we need hadronic interaction models?
 yes, for normalization of absolute energy and mass scale!!

KASCADE : energy spectra of single mass groups

Searched: E and A of the Cosmic Ray Particles <u>Given:</u> N_e and N_μ for each single event → solve the inverse problem

 $\frac{dJ}{d\lg N_e \, d\lg N_{\mu}^{tr}} = \sum_A \int_{-\infty}^{+\infty} \frac{dJ_A}{d\lg E} \left[p_A(\lg N_e, \lg N_{\mu}^{tr} \mid \lg E) \, d\lg E \right]$

- kernel function obtained by Monte Carlo simulations (CORSIKA)
- contains: shower fluctuations, efficiencies, reconstruction resolution

KASCADE collaboration, Astroparticle Physics 24 (2005) 1-25

KASCADE results

- same unfolding but based on different hadronic interaction models embedded in CORSIKA

- all-particle spectrum similar
- general structure similar: knee by light component
- relative abundances very different for different high-energy hadronic interaction models

KASCADE collaboration, Astrop.Phys. 24 (2005) 1, Astrop.Phys. 31 (2009) 86

TUNKA

• A sharp knee around 4 PeV

• First 'Cherenkov' spectrum with similar flux

Extension plans: muon counters, Scintillators, Radio net

V. Prosin, Tunka workshop 2009

Tibet ASγ

A sharp knee around 4 PeV Heavy particle dominance at knee

10¹⁸ OKOI 10¹⁷ 2^{2.5}dJ/dE [eV^{1.5}m² sec¹ sr¹] CREAM Fibet:SIBYL1 10 BACER H.E.S.S.QGS H.E.S.S.SIB 10 C/20 O/200 10¹³ Fe / 10³ 10¹² 10¹² 10¹⁶ 10¹⁸ 10¹³ 10¹⁴ 10¹⁵ 10¹⁷ Primary Energy [eV/particle]

Extension plans:

- Tibet-AS: scintillator array
- YAC (Yangbajing Air shower Core): **Burst Detector**
- Tibet-MD: muon detector
- → Spectrum of heavy primaries

All-particle Spectrum

Sunil Gupta, ISVHECRI 2010

GRAPES

10 10⁶ 10 10° Energy E [GeV/n]

2-6/8/2010 Turku-Finland

NEVOD-DECOR

- large water cherenkov detector, Russiaposition detector
- → Muon bundles (under large zenith angles)
 → Sensitivity to energy and composition
- extension plans: array around

Petruhkin, KASCADE Symposium 2009

EMMA

Experiment with Multi Muon Array

- 9 x 15 m² muon detectors
- 75m depth of Pyhäsalmi mine, Finland
- muon bundles (E_u > 50GeV)
- → muon multiplicity and lateral distribution
- → sensitivity to energy and composition around knee
- extension plans: scintillators in mine (and on top?)

EMMA Collaboration, ICRC2009

Validity of Hadronic Interaction Models

2-6/8/2010 Turku-Finland

Andreas Haungs

KASCADE tests new models: EPOS 1.99

- EPOS 1.99 + FLUKA:
- composition light dominant
- Knee caused by light elements
- all-particle spectrum okay
- the case for EPOS 1.61: all-particle spectrum not okay very proton dominant

hadronic interaction model tests with EAS data

correlation of observables: no hadronic interaction model describes data consistently ! → tests and tuning of hadronic interaction models ! → close co-operation with theoreticians (CORSIKA including interaction models) → e.g.: •EPOS 1.6 is not compatible with KASCADE measurements •QGSJET 01and SIBYLL 2.1still most compatible models

KASCADE collaboration, J Phys G (3 papers: 25(1999)2161; 34(2007)2581; (2009)035201)

SHINE (NA61) @ SPS/CERN

 had (and will have) dedicated cosmic ray runs pp (13-158GeV), pC (31-158GeV), π C (158-350GeV) particle identification with TDC and ToF

Inclusive π^{-} - spectra (pilot run 2007)

LHCf @ LHC ATALAS DI (x6MBXW) DFB> LHCf

- Measures very forward (η >8.4; including 0 degree)
- Measures neutral particles at LHC p-p (ion-ion) collisions
- Tungsten calorimeter with plastic scintillators

Spectra Comparison with MC (QGSJET2)

Sako, ISVHECRI 2010

ALICE @ LHC

 Multiplicity distributions and dNch/d η at 0.9, 2.36 and 7 TeV
 → significantly larger increase from 0.9 to 7 TeV than in HEP- MCs
 → CR- MCs seems to better agree

Henner Büsching, ISVHECRI 2010 // Sergey Ostapchenko (CR-MC)

2-6/8/2010 Turku-Finland

Status of the (1st) Knee

- -) knee caused by light primaries -> composition gets heavier across knee -) positions of knee vary with primary elemental group
- -) relative abundancies depend strongly on high energy interaction model
- -) no (interaction) model can describe the data consistently (KASCADE)
- -) all-particle spectra agree inside uncertainties (different sharpness?)
- -) proton spectra agree with direct measurements (not for EPOS1.6)
- -) \rightarrow protons are not the dominant primary at the knee!

GAMMA

- Mt. Aragats, Armenia, 3200 m a.s.l.
- scintillator array + µ-detectors (5GeV threshold)
- energy estimator: $Ln(E_0) \approx Ln(E_1) = f(N_{ch}, N_{\mu}, s, \cos\theta)$

Sharp bump close to 10¹⁷eV * probably heavy primary (age distribution) * local origin (sharpness)

> **Planned enhancement:** µ-detectors from 150m² to 250m² using scintillation detectors and Geiger counters

KASCADE-Grande

- Energy range: 100TeV 1EeV
- Larger area: 0.5 km²
- Grande: 37×10 m² plastic scintillation detectors
- Nch + total muon number

- hardening of the spectrum above 10¹⁶eV
- small, but significant steepening close 10¹⁷eV

M.Bertaina et al, ECRS 2010

KASCADE-Grande composition: N_µ / N_e-ratio

- shower size ratio: investigation of mean and rms

- → rms of simulated distributions less model dependent than mean
- → composition: more than 2 components needed at 10¹⁷eV

KASCADE-Grande collaboration (E. Cantoni), ICRC 09

IceTop/IceCube

HEAT: High Elevation Auger Telescopes

- 3 ``standard'' Auger telescopes tilted to cover 30 60° elevation
- Sensitivity down to 10¹⁷eV

M.Kleifges-Auger Collaboration, ICRC09

EAS Radio detection

AERA@PAO

- new detection technique E_{threshold} ≈ 10¹⁷eV
- successful and sensitiv to
 - primary energy $\varepsilon \sim E_0^{\gamma}$ ($\gamma \approx 1$) $\Delta E/E \sim 20-25\%$
 - arrival direction beam forming resolution better 1°
 - composition LDF-slope
 \(\Delta A\)/A still unknown
- still many question open to emission mechanism(s)

or stand-alone technique?

Experimental Summary

Below 10¹⁵ eV :

- p,He shows hardening, He becomes dominant
- future: higher energies + heavier particles
- anisotropies found (10-20TeV)

Knee region - 10¹⁵ eV - 10¹⁶ eV :

- Knee caused by cut-off for light elements
- Proton spectra agree with direct measurements KAS
- sharp knee
- rigidity dependence of knees
- Relative abundancies depend strongly on high energy interaction model
- future: EAS extensions and accelerators

Transition region 10¹⁶ eV - 10¹⁸ eV :

- hardening at 10 PeV
- steepening at 80 PeV (=Z·E_{knee}^{proton})
- bump at 80 PeV
- second knee?
- future experiments: ICETOP, TUNKA, PAO-Enhancements, Radio, TALE

34

t CREAM CREAM, TIGER, TRACER, ... Milagro, ARGO, ICECube

> KASCADE, GRAPES, TIBET TIBET, TUNKA

> **KASCADE, GRAPES, TIBET**

KASCADE, TIBET

TIBET, GRAPES, LHC, SPS

GAMMA Akeno, Hires-Mia

KASCADE-Grande

KASCADE-Grande

Comparing data with astrophysical models - I

Simple rigidity dependence: galactic diffuse spectrum from SNR

Knee by sharp cut-off of light elements!
At knee: He or p dominant, >10¹⁶eV heavy dominant!
Hardening at 10¹⁶eV!
Sharpness of knee?
What adds above 10¹⁷eV?

C. De Donato, G.A. Medina-Tanco, Astrop. Phys. 32 (2009) 253.

Comparing data with astrophysical models - I

Simple rigidity dependence: galactic diffuse spectrum from SNR

Knee by sharp cut-off of light elements!
At knee: He or p dominant, >10¹⁶eV heavy dominant!
Hardening at 10¹⁶eV!
Sharpness of knee?
What adds above 10¹⁷eV?

C. De Donato, G.A. Medina-Tanco, Astrop. Phys. 32 (2009) 253.

Comparing data with astrophysical models - II

Modifications to obtain a sharp knee

including single source at knee

Makes knee sharp
Need helium or medium primary
Makes hardening at 10¹⁶eV weaker
What adds above 10¹⁷eV?

Erlykin&Wolfendale, J.Phys.G 31(2005)675 Shibata et al., ApJ ,716: 1076 (2010)

nonlinear acceleration effects at SNe shock fronts

Makes knee sharper
Helium dominant at knee
heavy dominant above knee
Makes hardening at 10¹⁷eV?

Shibata et al., ApJ ,716: 1076-1083 (2010) Malkov & Drury 2001; Ptuskin & Zirakashvili 2006

Comparing data with astrophysical models - III

Explaining spectrum around 10¹⁷eV

Simple transition from rigidity galactic to proton extragalactic

•Rigidity knee •Requires 2nd knee? •At 10¹⁷eV only proton and iron?

V.Berezinsky, astro-ph/0403477

Single source at higher energies (e.g. iron component from compact objects = pulsars)

•Bump at 10¹⁷eV •Iron dominant at 10¹⁷eV?

GAMMA coll., J.Phys. G: Nucl. Part. Phys. 35 (2008) 115201

Comparing data with astrophysical models - IV

Inclusion of a galactic component B

Andreas Haungs

Comparing data with astrophysical models - IV

Example for possible component B: Different types of Supernovae!

V. Ptuskin et al., Astrophysical Journal 718 (2010) 31.

Summary

Last decade: deeper insight into the spectrum....more to come:

Summary

Cosmic ray physics around the knee: STAY TUNED!

Thank you!

Gianni Navarra 12/9/1945 - 24/8/2009

2-6/8/2010 Turku-Finland

