High Energy Neutrino Astronomy

Focusing on Water/Ice Cherenkov technique

Scientific Motivations Detection principles Status of Current projects Selected analyses

Antoine Kouchner University Paris 7 Diderot AstroParticle and Cosmology APC

Turku

ECRS 2010

Neutrino telescopes science scope

Marine sciences: oceanography, biology, geology...

High energy cosmic rays

Methods:

 Anisotropy studies of highest energetic CR air showers
 Correlations with AGN observed but not fully conclusive

 Gamma-ray astronomy
 [∞] but γ-rays can be produced by electromagnetic processes (eg. ICS)

• Neutrino astronomy !

Cosmic ray connection

- Primary acceleration («Bottom-Up») Stochastic shocks (Fermi mechanism) Explosion /Accretion /Core collapse
- Hadronic cascades (as for atmospheric showers)
- GZK cut-off observed
 "guaranteed' source of « cosmogenic »
 neutrinos E>~10¹⁷ eV

Neutrinos as actor of the multi-messenger scene

- ✓ No absorption \rightarrow **Cosmological distances**
- ✓ Weakly interacting → Core of dense objects
- \checkmark No deflection by B \rightarrow **Point sources**
- ✓ No delay \rightarrow Transient phenomena

Neutrinos would open a new non-EM window on the Universe

But...so challenging to detect ! (so far only sun & SN1987A ~MeV)

DETECTION PRINCIPLES

Detection principle

μ well suited for HE detection

- Both range and cross-section increase with energy
- Large effective volume

Detection of Cherenkov light emitted by muons with a 3D lattice of PMT

U

X

W

ν

© François Montanet

Time, position, amplitude of PMT pulses $\Rightarrow \mu$ trajectory (~ v trajectory)

Requires a large dark transparent detection medium

Physical background sources

Atmospheric muons: only downgoing Shield detector & define signal as upward muons

Atmospheric vs cosmic neutrinos

Search for anisotropy

• Time and/or space coincidences with other cosmic probes

First signal for NT is atmospheric neutrinos

Other neutrino interaction topology

Other detection techniques

Acoustic shock, Optical, Radio (Askaryan Cherenkov), E.A.S, fluorescence

Cf O. Deligny's talk for AUGER (yesterday)

STATUS OF CURRENT PROJECTS

Cherenkov detectors world map

BAIKAL (1989) : Baikal Lake, Siberia Gigaton Volume Detector GVD (~2017)

Why the Mediterranean Sea?

- Obvious complementarity to South Pole
 - TeV sources, Galactic centre, galactic plane
- Deep sites up to ~5000m
 - Reduces muon background contamination
- Infrastructure close to shore
 - Logistically attractive
- Re-surfacing and re-deployment of faulty/damaged detector elements is feasible
- Long scattering length
 - Good pointing accuracy

Optical activity [quiet in ice and fresh water]

Living creatures/bacteria

⁴⁰K decay

Require causality filter for reconstruction Used for calibration

Most γ TeV sources in the field of view of northern NT !

Baikal NT status

Baikal (NT200) physics studies

Point sources / atmospheric neutrinos

- 372 neutrinos in 1038 days (1998-2003) Expected 385 from Monte Carlo
- Search for up-going μ correlated with 155 GRB in time and direction.

No excess, no significant cluster, no correlation

Diffuse High Energy Neutrinos

Skyplot of v events for 5 years E_{THR} 15-20 GeV (gal. coord.)

• Studies of bright cascades detected in the telescope: a search for excess above the expected background from atmospheric muons.

The 90% C.L. "all flavor " (new analysis) limit, $v_e:v_{\mu}:v_{\tau}=1:1:1$ $E^2 \Phi_v < 2.9 \cdot 10^{-7}$ GeV cm⁻² s⁻¹ sr⁻¹ 20 TeV < $E_v < 20$ PeV

Neutrinos from DM annihilations

• Exotic physics Search for fast and slow moving magnetic monopoles @ Upper limits

The ANTARES neutrino telescope

Anchor/line socket

Detector completed in May 2008

25 storeys / line
3 PMTs / storey
885 PMTs

Deployed in 2001

40 km

Junction box (since 2002)

Interlink cables

14.5 m

~70 m

100/m

350 m

ANTARES reconstructed data set

Fair agreement with Monte Carlo atmospheric neutrinos: 916 (30% syst. error) atmospheric muons: 40 (50% syst. error)

Physics program started. First results presented.

Cf A. Margiotta's talk (this morning)

KM3NeT activities

Consortium : 40 institutes from 10 European countries

Cf E. de Wolf's talk on Thursday

http://www.km3net.org/public.php

Objectives:

- Built a cubic-km scale NT in the Mediterranean that exceeds IceCube sensitivity by a substantial factor (target TeV galactic sources for an overall budget of ~ 250 M€)

- Provide node for Earth and marine sciences (real time multidisciplinary observatory)
- Start 5 years construction program in 2013

Achievements :

- Constructive gathering of "dispersed" forces
- Conceptual Design Report (CDR) published in 2008_
- Technical Design Report (TDR) now available Pending :
- Clarify the question of the site in the coming year

IceCube: a km³ NT at South Pole

IceCube extension to 4π sky

The size of IceCube now allows to search for down going neutrinos at very high energy

Sensitivity is reduced by:

- HE cut required to kill atmospheric background
- Vetoing against background (contained interactions)
- Difficult for TeV galactic sources like RX J1713.7-1936

Generation Shonert et al. Phys.Rev.D79,043009 (2009)

SELECTED ANALYSES

Diffuse v_{II} flux – Upper limits (E⁻²)

Recent searches for neutrino point sources

- SK experiment (low energy threshold E>1.6 GeV)
 All 3134 upward through going events in 2623 days
- ANTARES first analysis with 5 lines (TeV)
 2007 (140 days) data analyzed with simplified reconstruction

•ICECUBE with IC40 data set (375.5 days) in all sky

Summarized generic "blind" analysis (Optimized with scrambled data set)

- Use Clusterization algorithm
- Calculate a statistic given data (eg. Likelihood ratio)
- Compute *p-value* (probability to observe such statistic from bkg)
- Compute post-trial significance probability to observe *p-value* from many experiments

These analyses can be performed for :

- All sky search
- Predefined list of known sources
- Collection of sources of same kind summed up (stacking analysis)

Selected results

Updated searches (IC40)

Other analyses

• IC22+ AMANDA scan of the accessible part of the galactic plane 100 GeV < E < ~ PeV

2.3 σ effect Should be considered as background fluctuation Ref: Sestayo VLVNT09

•Time-varying sources (IC22): (distance between couple of Analyses optimized by a priori

information on the variability (e.g micro-quasars)

2-point correlation analysis in the entire region (distance between couple of events compare to random case)

Cygnus region defined a priori

Multi-messenger analysis (1)

Search for neutrino events in coincidence with observed GRB

- Time and direction known @ background reduction @ improved sensitivity
- Individual modeling of bursts using satellite data (fireball model)

Multi-messenger analysis (2)

- Reversely, IceCube and ANTARES also send alerts for optical follow up
 - Could give confirmation of a detection
 - Triggers are VHE events or multiplets (rolling searches)

IceCube

Latency has been reduced to ~ minutes Alarm rate ~ 30 /year Alerts are sent to ROTSE T_0 , T_0 +1, 2,...14 days

Antares

Latency ~ sec Alarm rate 1-2 / month Alerts are sent to :

- TAROT (La Silla, Chile) since Feb 2009
- T_0 , T_0 +1, 3, 9 and 27 days • ROTSE for 3 months

IceCube is setting up a program with MAGIC (La Palma, E>25GeV)

System currently under commissioning

GWHEN working group

Objective: conduct a joint search for HE Neutrinos and Gravitational Waves

Motivations:

-plausible common sources GRBs (core collapse into BH or coalescing neutron stars), SGRs (magnetars), microquasars... *References : http://www.gwhen-2009.org*

- potential for discovery of hidden sources (e.g. failed GRBs)

Indirect Search for Dark Matter

 Γ_{ann} : annihilation rate per unit volume σ_{ann} : neutralino-neutralino cross-section v: relative speed of the annihilating particles ρ : neutralino mass density m: neutralino mass

Potential $\chi\chi \rightarrow \nu$ sources are Sun, Earth & Galactic Centre χχ self-annihilations can produce significant high-energy neutrino flux "hard" annihilation : χχ-> W+W-

"soft" annihilation : χχ-> bb

Prospects for dark matter

• Current limits do not constrain the WMAP favored models (0.094 < $\Omega\chi$ h²< 0.129)

•Other models (e.g. mUED) have better prospects (direct LKP annihilation into neutrinos)

Spin-dependent scenarios

Very competitive sensitivity compared to direct detection experiments in the case of spin-dependant neutralino interaction

Conclusions

IceCube is almost 100% completed

- Available physics results from IC40 soon IC59
- Now probing theoretically interesting regions
- Intriguing fluctuations... Nothing else than that yet
- Deep Core component increases sensitivity at low energy
- Sensitivity to Southern sky does not reach ANTARES in TeV range

ANTARES detector completed in May 2008

- Largest neutrino telescope in Northern hemisphere
- First physics results
- A km-scale neutrino telescope in the deep-sea is feasible

KM3NeT has made serious progresses

- TDR released
- A possible start of the construction in 2013?
- A large program of synergetic multi-disciplinary activities

ANTARES/KM3NeT/IceCube have common meetings

Exciting physics program ahead

- Astronomical sources, multi-messenger approaches, CR physics, DM searches, exotic physics...
- Stay tuned!

