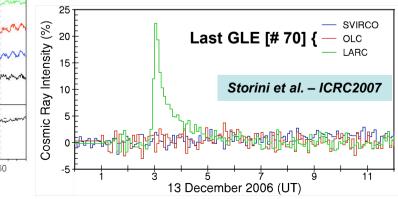


10²

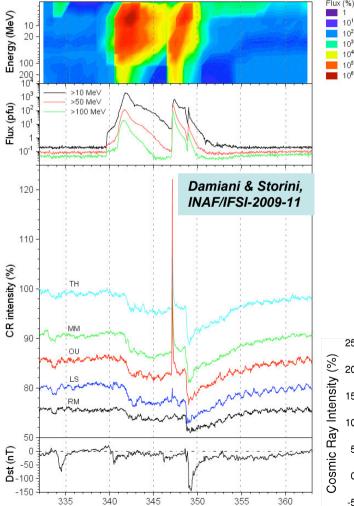
10³


10⁵

10⁶

SOLAR ENERGETIC PARTICLES IN THE TERRESTRIAL POLAR CAPS Flux (%) 1 10¹

M. Storini¹, A. Damiani¹, E.G. Cordaro² 1: INAF/IFSI-Roma 2: UNIChile/FCFM


The short- and medium- term variability of several minor atmospheric components (e.g., O3, NO, NO2, OH, CIO, HOCI, HNO₃) have been extensively investigated in connection of the presence/absence of solar energetic particles (SEPs). SEP-induced ionization and/or atypical meteorological phenomena (e.g., stratospheric warming) are the sources of variations in Polar Regions. Progress on

the topic is discussed.

ACKNOWLEDGEMENTS

Work partly performed inside ESS2 Project of the Italian Space Agency (ASI contract I/015/07/0) and PNRA of Italy. Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with NASA. Neutron monitor P.I.s are also thanked.

2006 (November 28 - December 29)

Use of hydroxyl (OH) radicals from MLS-AURA

AURA satellite:

- sun-synchronous orbit at 705 km
- quasi polar orbit (82 N&S)
- inclination 98°
- period 96.8 minutes
- about 3500 profiles per day
- about 14 orbits/day

Microwave Limb Sounder (MLS) instrument:

scans the Farth's limb in the forward direction of flight and detects the microwave emission in different spectral regions. Measurements are performed along the sub-orbital track, and resolution varies for different parameters.

OH sources $H_2O + O(^1D) - > OH + OH$ (stratosphere/lower mesosphere) $H_2O + h_V - > OH + H$ (upper mesosphere)

OH sinks

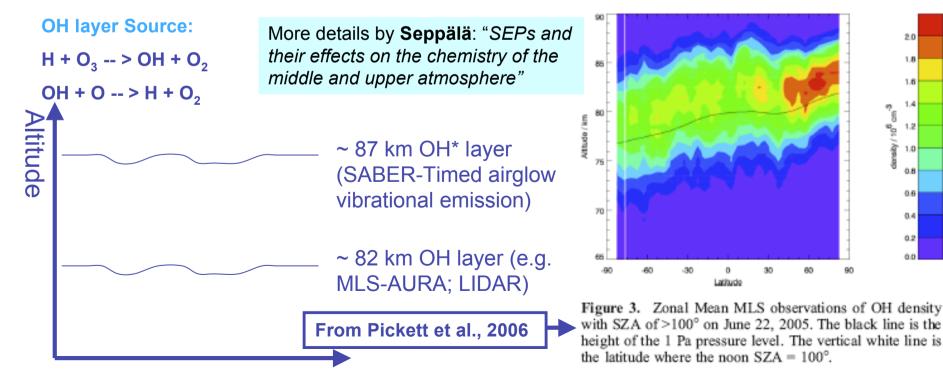
Cannibalistic reactions e.g., $OH + HO_2 - > H_2O + O_2$

2.0

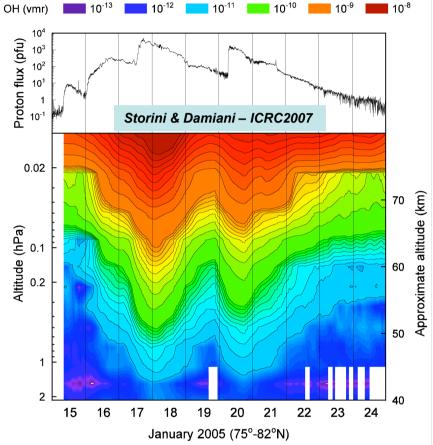
1.8

1.6

1.4


1.2

1.0


0.8 0.6

0.4 0.2

sky / 10⁶ cm⁻³

OH radicals / MLS-AURA: Selected Geographic band

Discovery of the mesospheric trail of SEP events!

[see also: Usoskin et al., Acta Geophys. 57(1), 88-101, 2009]

completely located inside the *polar cap* (geomagnetic latitude greater than 60°);

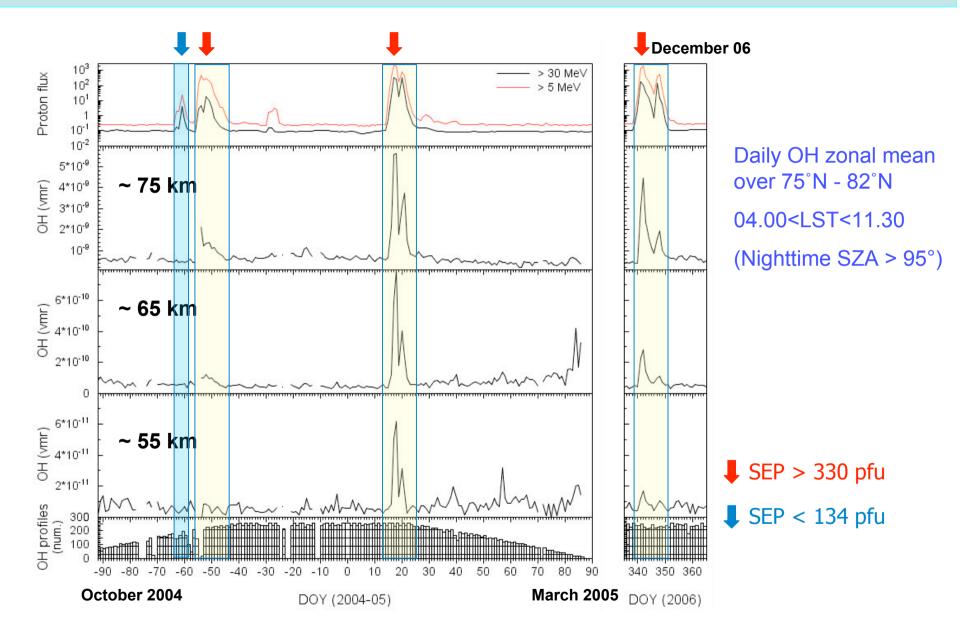
• mainly outside the *auroral belt*;

75° - 82° (towards the pole)

• the *winter night* is roughly maintained for many months;

suitable region to perform investigations

by using *zonal means* on a daily basis;


- region inside the core of the *polar vortex*;
- region less disturbed by *planetary waves*.

NOTE:

- 1. Low background values at nighttime for the mesospheric hydroxyl (OH) radical.
- 2. GOES data for the proton flux level.

M. Storini, A. Damiani and E.G. Cordaro

MLS OH: Oct. 2004 - March 2005 and Dec. 2006

M. Storini, A. Damiani and E.G. Cordaro

MLS OH: April - September 2005

M. Storini, A. Damiani and E.G. Cordaro

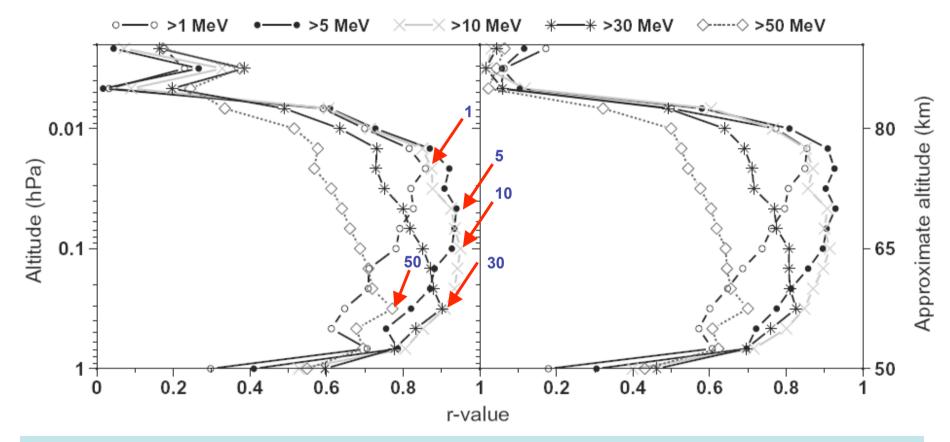
SEP EVENTS and MLS/AURA MEASUREMENTS

The number of OH profiles used for the daily zonal means are ~250-200 in mid-winter, decreasing to ~50 (100) at the beginning/end of the winter in NH (SH) owing to the incoming illumination. In this way, the relative error of the means is ~5% for most of the analyzed periods.

SEP events (pfu unit)				OH increase (%)		
Start (YY, MM DD/UT)	Maximum (Day/UT)	Proton flux at >10 MeV	Number of samples per SEP	~55 (km)	\sim 65 (km)	~75 (km)
04, November 01/0655	01/0805	63	0	_	_	_
04, November 07/1910	08/0115	495	9	_	99	397
05, January 16/0210	16/1840	365	2	76	234	279
05, January 17/1240	17/1750	5040	3	1221	2131	894
05, January 20/0650	20/0810	1860	4	575	1030	448
05, May 14/0525	15/0240	3140	4	160	379	328
05, June 16/2200	17/0500	44	0	_	_	_
05, July 14/0245	15/0345	134	6	_	_	_
05, July 27/2300	29/1715	41	8	_	_	_
05, August 22/2040	23/1045	330	4	_	93	110
05, September 08/0215 ^a	11/0425	1880	0	171	198	104
05, September 14/0040 ^a	15/0905	(235)	0	_	_	_
06, December 06/1555	07/1930	1980	7	110	954	940
06, December 13/0310	13/0925	698	4	_	315	543

Features of the analyzed SEP events. First four columns: SEP event start, time of its maximum flux, proton flux and number of samples per SEP utilized in the correlations of Fig. 2 (see the text). Last three columns: OH increase (%) at 55 km, 65 km and 75 km (referred to the pre-SEP day).

-: No evaluation (see the text)

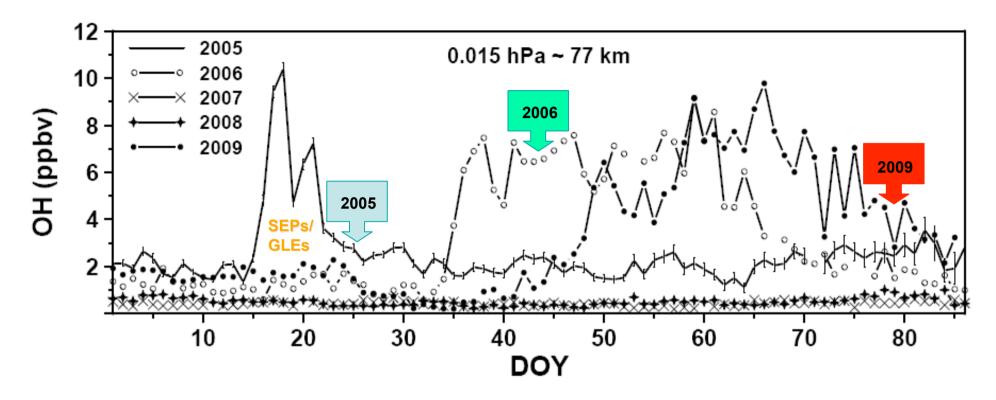

^a Excluded from the correlation analyses.

Please cite this article in press as: Damiani, A., et al. The hydroxyl radical as an indicator of SEP fluxes in the high-latitude terrestrial atmosphere. J. Adv. Space Res. (2010), doi:10.1016/j.asr.2010.06.022

M. Storini, A. Damiani and E.G. Cordaro

SEP EVENTS and MLS/AURA MEASUREMENTS

The quite similar results of the correlations on the right and left sides indicate that, normally, the SEP-induced variations are deeply dominant over the day to day variability.

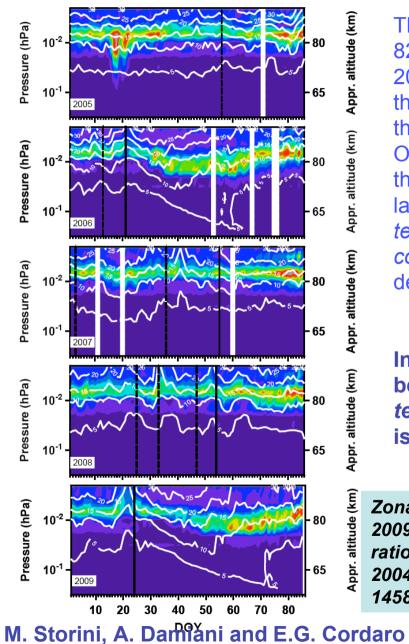


Corr. Coeff. of proton flux vs. OH mixing ratio (left: flux vs. daily OH increment; right: flux vs. actual daily OH for SEP days).

[from: Damiani et al., Adv. Space Research, in press, 2010]

M. Storini, A. Damiani and E.G. Cordaro

TO NOTE: February 2006 and 2009 !


Daily zonal mean nighttime OH (75°N - 82°N) from 1 January to 27 March (years: 2005 to 2009) at ~ 77 km [from: Damiani et al., Atmos. Chem. Phys. Discuss., 10, 14583-14610, 2010]

The main features of the figure are the sudden and short-lived OH increases related to the SEP events of 17 and 20 January 2005 and the long-lasting OH enhancements during February 2006 and February/March 2009 (for them no SEP events are identified in GOES data).

M. Storini, A. Damiani and E.G. Cordaro

TO NOTE: February 2006 and 2009 !

OH (ppbv) 0 1 2 3 4 5 6 7 8 9 10

The OH layer inside the polar vortex (nominal altitude: 82 km) descended during Feb. 2006 and Feb./Mar. 2009 by ~ 5-7 km, and its density increased to more than twice January values. In these periods and location the abundance of the OH layer is *comparable* with the OH values induced by SEP forcing (see Jan. 2005) at the same altitudes. Moreover, in both years, the OH layer drop was coupled with *increased mesospheric temperatures, elevated carbon monoxide and an almost complete disappearance of* O_3 at the altitude of the descended layer.

In conclusion the mesospheric OH abundance can be used as *indicator for SEP presence in the terrestrial environment,* provided that meteorology is also taken into account.

Zonal mean nighttime OH (75°N-82°N) for Jan.1-Feb. 27 of 2005-2009. White contours refer to zonal mean nighttime CO mixing ratio, as tracer for atmospheric motion (e.g. Zafra and Muscari, 2004). [from: Damiani et al., Atmos. Chem. Phys. Discuss., 10, 14583-14610, 2010]

Strong polar vortex in 2004, 2006, 2009 with intense air descent! - Useful research papers

On recent interannual variability of the Arctic winter mesosphere: Implications for tracer descent

David E. Siskind,¹ Stephen D. Eckermann,¹ Lawrence Coy,¹ John P. McCormack,¹ and Cora E. Randall²

Large increase of NO₂ in the north polar mesosphere in January– February 2004: Evidence of a dynamical origin from GOMOS/ ENVISAT and SABER/TIMED data

Alain Hauchecorne,¹ Jean-Loup Bertaux,¹ Francis Dalaudier,¹ James M. Russell III,² Martin G. Mlynczak,³ Erkki Kyrölä,⁴ and Didier Fussen⁵

Ionospheric evidence of thermosphere-to-stratosphere descent of polar $\ensuremath{NO_X}$

Mark A. Clilverd,¹ Annika Seppälä,² Craig J. Rodger,³ Pekka T. Verronen,² and Neil R. Thomson³

Satellite observations and modeling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming

G. L. Manney^{1,2}, R. S. Harwood³, I. A. MacKenzie³, K. Minschwaner², D. R. Allen⁴, M. L. Santee¹, K. A. Walker^{5,6}, M. I. Heggin², A. Lambert³, H. C. Pumphrer³, P. F. Bernath^{1,6}, C. D. Boone⁶, M. J. Schwartz¹, N. J. Livesey¹, W. H. Daffer¹, and R. A. Fuller¹

THE STRATOSPHERIC AND MESOSPHERIC NO_y IN THE 2002–2004 POLAR WINTERS AS MEASURED BY MIPAS/ENVISAT

M. LÓPEZ-PUERTAS^{1,*}, B. FUNKE¹, T. VON CLARMANN², H. FISCHER² and G. P. STILLER²

Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming

Gloria L. Manney,^{1,2} Michael J. Schwartz,¹ Kirstin Krüger,³ Michelle L. Santee,¹ Steven Pawson,⁴ Jae N. Lee,¹ William H. Daffer,¹ Ryan A. Fuller,¹ and Nathaniel J. Livesey¹

M. Storini, A. Damiani and E.G. Cordaro

The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses

Gloria L. Manney,^{1,2} Kirstin Krüger,³ Steven Pawson,⁴ Ken Minschwaner,² Michael J. Schwartz,¹ William H. Daffer,¹ Nathaniel J. Livesey,¹ Martin G. Mlynczak,⁵ Ellis E. Remsberg,⁵ James M. Russell III,⁶ and Joe W. Waters¹

Arctic and Antarctic polar winter NO_x and energetic particle precipitation in 2002–2006

Annika Seppälä,¹ Pekka T. Verronen,¹ Mark A. Clilverd,² Cora E. Randall,³

Johanna Tamminen,¹ Viktoria Sofieva,¹ Leif Backman,¹ and Erkki Kyrölä¹

The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses

Gloria L. Manney,^{1,2} Kirstin Krüger,³ Steven Pawson,⁴ Ken Minschwaner,² Michael J. Schwartz,¹ William H. Daffer,¹ Nathaniel J. Livesey,¹ Martin G. Mlynczak,⁵ Ellis E. Remsberg,⁵ James M. Russell III,⁶ and Joe W. Waters¹

OH layer characteristics during unusual boreal winters of 2004 and 2006

J. R. Winick,¹ P. P. Wintersteiner,² R. H. Picard,¹ D. Esplin,^{3,4} M. G. Mlynczak,⁵ J. M. Russell III,⁶ and L. L. Gordley⁷

Enhanced NO_x in 2006 linked to strong upper stratospheric Arctic vortex

C. E. Randall, 1,2 V. L. Harvey, 1 C. S. Singleton, 1 P. F. Bernath, 1 C. D. Boone, 3 and J. U. Kozyra 4

ECRS, 3 – 6 August 2010, Turku, Finland

Mesospheric N₂O enhancements as observed by MIPAS on Envisat during the polar winters in 2002–2004

B. Funke¹, M. López-Puertas¹, M. García-Comas¹, G. P. Stiller², T. von Clarmann², and N. Glatthor²