BACKGROUND RADIOACTIVITY IN THE SCALER MODE TECHNIQUE OF THE ARGO-YBJ DETECTOR

ARGO 实验)

INFN and Dpt. di Fisica Università, Lecce INFN and Dpt. di Fisica Universita', Napoli INFN and Dpt. di Fisica Universita', Pavia INFN and Dpt di Fisica Università "Roma Tre", Roma INFN and Dpt. di Fisica Univesità "Tor Vergata", Roma INAF/IFSI and INFN, Torino INAF/IASF, Palermo and INFN, Catania IHEP, Beijing Shandong University, Jinan South West Jiaotong University, Chengdu Tibet University, Lhasa Yunnan University, Kunming HeBei Normal University, Shijiazhuang

P.Salvini @ECRS 2010 for the coll

With an energy threshold of few GeVs It is possible to study

- flaring phenomena
 - ✓ high energy tail of GRBs,
 - ✓ solar flares,
 - ✓ Environment influence on shower development

..... the ARGO-YBJ detector is made of 153 counters (43m² each)
counting the number of "events" (coincidence150ns) with
multiplicities >=1; >=2; >=3; >=4 in 0.5seconds ...
and rates 40KHz; 2KHz; 300Hz; 120Hz .

counting rates are influenced by meteorological effects, mainly pressure and temperature variations.

ARGO-YBJ scaler mode with ≥1

Multipliciti es ≥1	Barometric coefficients ~0.4 %/mbar	Cosmic ray trigger rate ~ 40 kHz	counting rates ≥2, ≥3 and ≥4 well reproduced by cosmic ray simulation at YBJ atm.depth,
≥2		~ 2.1 kHz	the expectation value for ≥1 is
≥3	~0.9 %/mbar	~ 310 Hz	sensibly lower (*) G.Aielli et al.,
≥4		~ 117 Hz	Astr.Phys.30(2008)85

In (**), following a measuremement of natural radioactive nuclei concentration in YBJ soil near the hall, it was suggested that the counting excess on the ≥1 counts coulld be due to the high energy g emissions from the three natural radioactive series (238U,232Th and 40K)

(**) C.Cattaneo, ICRC2009

RADON IN AIR : POSSIBLE INFLUENCES ??

and daughters 222 Rn

Ref: Rapporti ITISAN 01/12, 2002

Nuclide	т _{1/2}	Principali ene α	rgie (MeV) e ab β _{max}	obondanze γ
222Rn	3,82 d	5,49 (99,9%)		0,512 (0,078%)
²¹⁸ Po	3,05 min	6,00 (100%)	0,256 (0,02%)	—
99,98% 0,02% ▼ 214Pb 82	26,8 min		0,672 (46,6%) 0,729 (41,4%) 1,024 (8,5%)	0,242 (7,41%) 0,295 (18,7%) 0,352 (35,8%)
²¹⁸ At	1,6 s	6,65 (6,4%) 6,69 (90,0%) 6,76 (3,6%)	2,89 (0,1%)	—
214Bi 82 99,98% 0,02%	19,9 min	5,45 (0,012%) 5,51 (0,008%)	1,423 (8,38%) 1,505 (17,7%) 1,540 (17,6%)	0,609 (45,0%) 1,12 (14,9%) 1,76 (16,1%)
²¹⁴ Po	165 µs	7,69 (100%)		0,800 (0,014%)
210TI 81	1,3 min		1,32 (~25%) 1,87 (~56%) 2,34 (~19%)	0,298 (76,0%) 0,800 (98,9%) 1,31 (21,0%)
²¹⁰ Pb	22,2 a	3,72 (2 ·10 ⁻⁸ %)	0,016 (80%) 0,063 (20%)	0,047 (4,06%)

RADON IN AIR : POSSIBLE INFLUENCES ??

²¹⁰Pb

S	Nuclide	т _{1/2}	Principali ene α	rgie (MeV) e ab β _{max}	obondanze γ
te	²²² Rn	3,82 d	5,49 (99,9%)		0,512 (0,078%)
h	218Po 84 99.98% 0.02%	3,05 min	6,00 (100%)	0,256 (0,02%)	—
dat	²¹⁴ Pb	26,8 min		0,672 (46,6%) 0,729 (41,4%) 1,024 (8,5%)	0,242 (7,41%) 0,295 (18,7%) 0,352 (35,8%)
pu	218At 85	1,6 s	6,65 (6,4%) 6,69 (90,0%) 6,76 (3,6%)	2,89 (0,1%)	—
n a	²¹⁴ Bi 82 99,98% 0,02%	19,9 min	5,45 (0,012%) 5,51 (0,008%)	1,423 (8,38%) 1,505 (17,7%) 1,540 (17,6%)	0,609 (45,0%) 1,12 (14,9%) 1,76 (16,1%)
22 R	²¹⁴ Po ⁸⁴	165 μs	7,69 (100%)		0,800 (0,014%)

A time variable phenomenon we should take into account while correcting the scalers for the environmental parameters variation

3,72 (2 · 10-6%)

22,2 a

0,047 (4,06%)

0,016 (80%)

0,063 (20%)

RADON MEASUREMENTS IN AIR (Lukas Cell)

30 days, May2010

Radon enters the Argo hall from soil and cracks ,mainly on the north side (impressive concentration!!!) and exit through doors and windows with an ease dependent on ventilation and atmopheric conditions

	Eγ (KeV)
	609
	1120
DI Z 14	1238
	1764
	07
	87
Ph 214	242
10214	295
	352
Pb 210	47
	87
Pb 212	239
	306
	5 92
	960
11208	800
	2615

Simulation with FLUKA using graphics user interface (GUI) FLAIR.

Simulation of cluster response is in complete agreement with measured experimental RPC efficiencies : about 1% for Eγ about 1.2MeV (⁶⁰Co source) and 0.5% for Eγ of 0.66MeV (¹³⁷Cs source)

Rn conc., Bq/mc =	= 500	500	500
equilibrium factor =	= 1	0,5	0,7
CI	USTER RESPO	ONCE vs Rn,	Hz (lower value
H = 1 m	214	107	150
H = 2 m	398	199	278
H = 4 m	500	250	350
H = 0,003 m	0	628	377
H = 4,0003 m	500	878	727

Rn conc., Bq/m	c = 500	500	500	1000	3000
equilibrium facto	or = 1	0,5	0,7	0,7	0,7
	CLUSTER RESP	ONCE vs Rn,	Hz (lower w	value)	
H = 1 m	214	107	150	299	897
H = 2 m	398	199	278	557	1670
H = 4 m	500	250	350	700	2101
H = 0,003 m	0	628	377	754	2261
H = 4,0003 m	500	878	727	1454	4361

Simulation results (Radon in air)

- Radon daughters γ emitters could influence on scaler C=1,
- The excess on the C=1 rate due to a 500 Bq/m3 of Radon
- concentration varies roughly from 300Hz to 1KHz (depending mainly on the percentage of daughters still present in the air)
- That means an expected linear regression coefficient

$$\frac{\Delta C}{C_0} = \mu \ \Delta R$$

μ between 0.0015% and 0.005%

 ΔC = counting rate for C=1 variation respect to the average C_0 ΔR = Radon concentration value variation respect to the average

RADON CONCENTRATION VARIATIONS

In a stationary state, radon concentration could be written:

 C_{Rn} = radon concentration, Bq/m3, E_{Rn} = radon entering volume V, Bq/sec, λ_{Rn} = radon decay constant, 2,1.10⁻⁶ /sec I_{vent} = ventilation, in (air exchange/sec.)

Complex time variations in a open building with ventilation conditions varying during the day

RADON IN AIR : POSSIBLE INFLUENCES ??

- Single countings affected by daughters, not directly by the Rn
- Secular equilibrium reached after hours (but meanwhile radon daughters are removed from the hall by ventilation)
- Probably dependence of C=1 rate is on radon measured at the hall center (averaged behaviour) instead of the instant value measured at the north side

• Look for correlation in data in the same pressure range $(\Delta P=0.4mbar)$ and same temperature $(\Delta T=0.5^{\circ})$

Correlation factors (C=1 vs. Daughter's Delay)

C=1 vs. Radon@carpet center

Comments

- Correlation independent from time delay between Rn concentration and counting excess (cancelled by new radon emission or ventilation)
- Correlation with Radon at center is generally better respect to measure at North (it represents a good average concentration)
- Not all clusters on carpet show the same correlation... 15-20% appear to be badly to nothing correlated (spatial Rn distribution or locally different temperature?)

• What happens to multiplicity >=2 ??

Correlation factors (C=1 vs. Delay) (ANOMALOUS CLUSTERS)

Correlation factors (C>=2 vs. Daughter's Delay)

Summary:

- Radon daughters in air influence the C=1 Argo counting rate
- the simulated regression coefficient is consistent with the one experimentally observed

 Dependency is on the "averaged" concentration values, due to the intrinsic variability of radon emission and of ventilation building conditions

Diapositive di scorta

Measurements in place

- **1.** H*(10) rates (ambient equivalent dose): different conditions and places; with AT1123A, plastic scintillator, photon energy range: 60 keV 10 MeV
- 2. **gamma ray spectra** in different places, at soil/floor level, to quantify disomogeneities; NaI(TI) detector (low resolution, but with best handleing ability - NO shield: in this condition it detects both soil and environmental gamma radiations - there wasn't radioactive source for calibration)
- 3. **Rn gas time variations** in air (different places and long periods) MR1 system, **lukas cell apparatus**: the system has to be normalised at ARGO ambient pressure, 550-600 mbar)
- **4. CR-39 passive detectors:** measure the average Rn spatial homegeneity over the ARGO carpet (40 dosemeters)
- 5. soil samples analysed in Pavia (HPGe spectra) 4 samples

Clusters C>=1 counts

- H*(10) appears quite spatially omogeneus over different areas of ARGO carpet
- 2. H*(10) rate is higher in the North side than in the South side, according with ARGO counting
- H*(10) rate is greater at Argo installation than at sea level
- H*(10) measured is referred to gamma radiation of "low" energy (<10 MeV)

Corr.Factor C=1 vs. Daughter's Delay & C=1 vs.Radon

What can we do with ARGO-YBJ?

Folding of the proton effective area (N=1) with the mean spectral index of solar flares: 10⁷ $d\phi = AE^{-\alpha}dE \quad \alpha = 3.22$ = 1 10⁶ Effective area*Spectrum (A.U.) Protons 10 10-2 10² 10³ 10⁴ 10 Energy (GeV) 20 40 60 80 100 Energy(GeV)

C=1 CORRISPONDS TO MAX SENSITIVITY AT MINIMUM ENERGY!!!!

Complete agreement with measured experimental RPC efficiencies : about 1% for Eγ about 1.2MeV (⁶⁰Co source) and 0.5% for Eγ of 0.66MeV (¹³⁷Cs source)

Geometric efficiencies (different colours) vs Gamma ray energy

~ 3 h are needed to get the equilibrium

famiglie radioattive equilibrio secolare

 $A \rightarrow B \rightarrow C$

$$N_B(t) = \frac{\lambda_A}{\lambda_B - \lambda_A} \cdot N_A(t)$$

 $\lambda_A << \lambda_B$

 $\lambda_B - \lambda_A \cong \lambda_R | \lambda N(t) = Att(t)$

 $Att_{R}(t) = Att_{A}(t)$

Se il tempo di dimezzamento del padre è molto maggiore di quello del figlio, allora l'attività del discendente è uguale a quella del progenitore (l'attività e non il numero di atomi radioattivi!)

Measures in place, H*(10)

H*(10) RATE GENERAL STATISTICS	values, n.	AVERAGE	1 ST.DEV	ST.D, %
ARGO - Guest House - room SN 5	7	0,45	0,01	3,0
ARGO carpet - cluster 031	9	0,39	0,02	3,9
ARGO carpet - cluster 035 - 036	5	0,39	0,03	6,5
ARGO carpet - cluster 040	14	0,39	0,02	5,4
ARGO carpet - cluster 115	4	0,35	0,00	1,4
ARGO carpet - cluster 124	8	0,34	0,01	4,2
ARGO carpet - cluster 199	9	0,34	0,03	7,8
ARGO carpet - cluster 205	1 1	0,35	0,02	5,4
ARGO carpet - cluster 208	18	0,33	0,02	6,8
ARGO carpet - DCS location	10	0,33	0,08	23,9
EG's home - garden	2	0,11	0,00	4,6
Lhasa - Post Hotel - 2nd floor	4	0,23	0,01	2,8
General statistics	101	0,35	0,06	17,6

- 1. H*(10) appears quite spatially omogeneus over different areas of ARGO carpet
- 2. H*(10) rate is higher in the rear side than in the front side, *according with ARGO counting (Liguori preliminary data)*
- 3. $H^{*}(10)$ rate is greater at Argo installation than at sea level
- 4. H*(10) measured is referred to gamma radiation of "low" energy (<10 MeV)

Rn co	oncentratio	n, Bq/mc =			500				
R	n equilibriu	um factor =					0,5		
simulated	d VOLume	Deep, H =	1	2	4	0,003	4+0,003		
Volume of VOLume, mc =			43	87	174	6.400	6.400		
١	VOL Rn ac	cti∨ity, Bq =	21.734	43.469	86.938	3.200.000	3.200.000		
VOL Rn da	aughter ac	ctivity, Bq =	10.867	21.734	43.469	43.469	==		
						_			
			RESUME TABLE						
radionuclide	energy, E keV	BR %	cluster	cluster counts detected by RPCs because of Rn, Hz					
adionaciad	L, KC V	DIX, 70							
	609,3	45,5	20	39	48	118	165		
	665,5	1,5	1	1	2	4	6		
	768,4	4,9	3	5	6	15	22		
	934,1	3,1	2	4	5	12	16		
	806,2	1,3	1	1	2	4	6		
	1120,3	14,9	11	21	27	66	93		
	1155,2	1,6	1	2	3	7	10		
	1238,1	5,8	5	9	11	28	40		
D: 044 (*)	1281,0	1,4	1	2	3	/	10		
BI-214 (^)	1377,7	4,0	4	/	9	22	30		
	1401,5	1,3	1	2	3	/	10		
	1408,0	2,4	2	4	5	13	19		
	1509,2	2,1	2	4	5	13	18		
	1729,6	2,8	3	6	8	19	27		
	1/64,5	15,3	18	33	43	108	151		
	1847,4	2,0	3	5	6	15	21		
	2118,6	1,2	2	3	4	10	14		
	2204,2	4,9	/	13	17	44	61		
	2447,9	1,6	3	4	6	16	22		
	83	21,22	0	0	0	0	0		
Dh 211 (*)	242,0	1,3	0	0	0	0	0		
rp-214 (*)	295,2	18,4	5	10	11	28	40		
	351,9	35,6	10	21		61	86		
Dh 040 (*)	180,0	1,064	1	1	1	3	5		
PD-210 (*)	40,5	4,25	0	0	0	0	0		
Dh 010 (*)	220.0	30,59	0	0	0	0	0		
rn-212 (°)	238,6	43,0	0	0	0	0	0		
	300,6	3,18	1	2	2	5	1		
TOTAL	TOTAL 107 199 250 628 878								

Correlation factor vs.Delay - Radometer@carpet center – Press. cut 600mbar – Yscale -0.2->1.

Correlation factor vs.Delay - Radometer@carpet center – Press. cut 601mbar – Yscale -0.2->1.

Correlation factor vs.Delay - Radometer@carpet center – Press. cut 602mbar – Yscale -0.2->1.

Correlation factor vs.Delay - Radometer@North – Press. cut 600mbar – Yscale -0.2->1.

Correlation factor vs.Delay - Radometer@North – Press. cut 601mbar – Yscale -0.2->1.

Correlation factor vs.Delay - Radometer@North – Press. cut 602mbar – Yscale -0.2->1.

FIT Delay 3h – Radometer@carpet center – Press. cut 600mbar

300 400 500 600 700 800

902

FIT Delay 3h – Radometer@carpet center – Press. cut 601mbar

FIT Delay 3h – Radometer@carpet center – Press. cut 602mbar

100

200

300

400

500 600

700 800

FIT Delay 3h - Radometer@North – Press. cut 600mbar – Yscale -0.2->1.

FIT Delay 3h - Radometer@North – Press. cut 602mbar – Yscale -0.2->1.

Scall vs Radon(Bgperm3) NORTH clu033 DELAY=6

Scall vs Radon(Boperm3) NORTH clu034 DELAY=E

Correlazioni Scaler1 - Pressione 2/10/2009 - 12/10/2009 (10 giorni)

Concentrazione radon nei tre periodi

Dipendenza Scal1 vs. Press nei tre periodi

Dipendenza Scal2 vs. Press nei tre periodi

