PAMELA: New e⁺ sources?

• For all secondaries (e.g. anti-p)

Radiative e⁺ losses- depend on propagation in Galaxy (poorly understood)

$$n_{+}(\varepsilon) = Q_{+} X_{\rm sec}(\varepsilon/Z) f_{\rm rad}$$

- * At ~20GeV: f_{rad}~0.3~f_{10Be}
 - → e⁺ consistent with 2ndary origin
- * Above 20GeV:
 - If PAMELA correct
 - \rightarrow energy independent $f_{rad}(\epsilon)$

[Katz, Blum & EW 10, MNRAS 405, 1458]

Gamma-ray bursts, Collisionless shocks and Ultra-high energy comsic-rays

> E. Waxman Weizmann Inst., Israel

• $E \sim \Gamma^2 M(R,n)c^2 \rightarrow \Gamma \sim (E/nm_p R^3)^{1/2}$ $\Gamma \{1min, 1day, 1yr\} \sim \{100, 10, 1\}$

[Blandford & McKee 76]

Why collisionless shock?

Coulomb:
$$\Gamma m_p c^2 = \frac{e^2}{d} \Rightarrow \Delta_s \sim \lambda_{Coul.} \approx \frac{1}{\Gamma n \pi d^2} = 10^{31} \Gamma n_0^{-1} \text{ cm}$$

Plasma: $\omega_p = \sqrt{\frac{4\pi\Gamma n e^2}{\Gamma m_p}} \Rightarrow \Delta_s \sim \lambda_{sd} = \frac{c}{\omega_p} \approx 10^7 n_0^{-1/2} \text{ cm}$

Afterglow: II. Radiation A phenomenological model

- Collisionless: B generation, non-thermal particles \rightarrow synchrotron emission
- Open questions: 1. B generation: $B_{down}^2 / 8\pi = \varepsilon_B u_{thermal,down}$

2. Non-thermal e:
$$\gamma_{e,thermal} \neq \varepsilon_e \frac{m_p}{m_e} \Gamma$$

 $\gamma_e > \gamma_{e,thermal} : \frac{dn_e}{d\gamma_e} \propto \gamma_e^{-p}; p \neq 2$

Observations: Phenomenological success

- Model parameters $\{E,n,p,\epsilon_e,\epsilon_B\}$
- Qualitative agreement (t>10hr) f(t,v)=A t^{α(p)} v^{β(p)}
- Ι \mathbf{II} \mathbf{III} IV log flux density (μJy) 2 0 -2 $\nu_{\mathbf{a}}$ $\nu_{\rm m}$ $\nu_{\rm c}$ 10 12 14 16 18 Log Frequency (Hz)

- Observables
 - $\{f_m, v_m, v_c, v_a\}$

[Wijers & Galama 98]

- Typical values: {E~10⁵²erg, n~1/cm³, p=2.2+-0.1, $\varepsilon_e \sim \varepsilon_B \sim 0.1$ } No Γ dependence (Γ <30)
- [EW 97; Freedman & EW 01]

The challenges

- Highly non magnetized: $U_{B,up} \sim 10^{-9} \text{ nm}_p \text{c}^2$ [$\omega_L = e\Gamma B_{up}/\Gamma m_p \text{c}$, $\omega_L^2/\omega_p^2 = B_{up}^2/4\pi nm_p \text{c}^2 \sim 10^{-9}$]
- ε_в~0.1
- EM instabilities (ala Weibel) may give ϵ_{B} ~0.1

[Gruzinov & EW 99; Medvedev & Loeb 99]

But: $\Delta' \sim R/\Gamma \sim \Gamma ct \sim 10^{17} cm \gg c/\omega_p \sim 10^7 cm$ λ_B must increase by orders of mag. @ downstream?

> [Gruzinov & EW 99; Gruzinov 01]

• Particle acceleration: e^{-} coupling ($\epsilon_{e} \sim 0.1$); dn/dy~y^{-2} p acceleration to UHE?

A note on upstream field

• t(acceleration) < t(inverse-Compton) X-ray (@10hr) $\rightarrow B_{up} > 0.2 n_0^{5/8} mG >> ~3\mu G_{[Li \& EW 06]}$

 $\begin{array}{ccc} 100 \text{MeV} \ (@100s) \rightarrow & B_{up} > 1 \ n_0^{5/8} \ \text{mG} >> \sim 3 \mu G \\ \text{(confinement only} \rightarrow B_{up} > 0.1 \text{mG} \ [Piran \& Nakar 10]) \end{array} \right. \tag{Li 10}$

→ Upstream field generation (Inconsistent with [Barniol & Kumar 10])

Fermi shock acceleration

- Test particle, elastic scattering, small momentum change: "diffusion"
- v/c<<1: p=2 (strong shock)
- v/c~1, Assuming Isotropic diffusion
 Simulations:
 p(Γ>>1)=2.2+-0.2

 Analytic approximation:
 p(Γ>>1)=20/9
- Open Q's:

p depends on diffusion form
Self-consistent (particles + EM fields) theory

[Krimsky 77; Axford, Leer & Skadron 78; Blandford & Eichler 78]

[Bednarz & Ostrowski 98; Kirk et al. 00; Ellison 05; Meli & Quenby 06]

> [Keshet & EW 05, Keshet 06]

Plasma simulations: I. Homogeneous

• 1D, 2D applicability??

[e.g. Wallace 91; Kato 05; Dieckmann 06]

Homogeneous (anisotropic) plasma

Study linear growth & saturation of EM instabilities, Reach $\epsilon_{\text{B}}\text{~}0.01,$

But:

Does the field decay on long (>>1/ $\omega_{\rm p}$) time scale? No particle acceleration

Relevance for non-homogeneous shock flow?

[e.g. Silva et al. 03; Jaroschek et al. 04]

Plasma simulations II: 3D

 3D e⁺ e⁻ plasma, Γ=15 "piston" Shock forms, width ~10 c/ω_p, Reach ε_B~0.01, But: >>1/ω_p field decay?

Particle acceleration? Relevance for e/p plasma?

[Spitkovsky 06]

 e/p (m_p/m_e=16) plasma simulations: Study physical process, but Do not reach shock formation.

[Nishikawa et al. 03; Fredriksen et al. 04; Hededal et al. 04]

Plasma simulations: III. Large 2D e⁺e⁻

B scale grows, ε_B grows to 0.01 Cooling = no γ >80 No steady state @ ω_p t~10⁴

Simulations: What have we learned?

- 2D e⁺ e⁻ plasma, Γ=15 "piston": Shock forms, width ~10 c/ω_p B scale grows, ε_B grows to 0.01 Growth associated with non-thermal particles No steady state @ ω_pt~10⁴
- Open:

Does B survive to $\omega_p t \sim 10^9$? Particle acceleration to $>\Gamma^2$? $e^+e^- = e^-p$ plasma? 2D=3D?

→ Numerics unlikely to directly resolve open Qs. Provides input/tests for analytic studies.

Some analytic beginnings

B amplifications by instabilities

[Medvedev et al. 05; Milosavljevic & Nakar 05; Lyubarsky & Eichler 06; Achterberg & Wiersma 2007; Bret 2009; Lemoine & Pelletier 2009; Lazar, Schlickeiser & Poedts 10 ...]

- Long wave-length modes in upstream
 - may deflect $\gamma < \Gamma^2$ in e⁺ e⁻ plasma
 - suppressed for $\Gamma < (m_p/m_e)^{1/2}$ in e-p plasma

[Rabinak, Katz & EW 09]

• Self-similarity $\lambda_{B}(D) >> c/\omega_{p}$ $\lambda_{B} \sim c/\omega_{p}$ As λ_{B} diverges \rightarrow Single length scale $L \sim \lambda_{B}$ \rightarrow Self-similar (scaleable) solutions e.g. $-1 < s_{R} < 0$: $B \propto D^{s_{B}}$, $dn/d\gamma \propto \gamma^{-2/(s_{B}+1)}$

Infinite conductivity $\rightarrow s_B=0$ (p=2).

[Katz, Keshet & EW 06]

UHE, >10¹⁹eV, CRs & GRBs

[EW 95]

- Constraints:
 - Confinement \rightarrow L>10¹² (Γ^2/β) L_{sun}
 - Synch. Losses $\rightarrow \Gamma > 10^{2.5} (L_{52})^{1/10} (\delta t / 10 ms)^{-1/5}$
 - Production rate: $\epsilon^2(dQ/d\epsilon) \sim 10^{43.5} \text{ erg/Mpc}^3 \text{ yr}$
 - Source distance: d(10²⁰eV)<d_{GZK}~100Mpc \parallel No L>10¹² L_{sun} at d<d_{GZK} \rightarrow Transient Sources

• Gamma-ray Bursts (GRBs) [EW 95, Vietri 95, Milgrom & Usov 95]

$$\downarrow L_{\gamma} \sim 10^{19}L_{sun} > 10^{17} (\Gamma / 10^{2.5})^2 L_{sun}$$

 $\Gamma \sim 10^{2.5}$ (pair production)
 $\downarrow \epsilon^2 (dQ/d\epsilon)_{\gamma} \sim 10^{52.5} erg^* 10^{-9.5} / Mpc^3 \ yr = 10^{43} \ erg / Mpc^3 \ yr$
Transient: $\Delta T_{\gamma} \sim 10s \ll \Delta T_{p\gamma} \sim 10^5 \ yr$ [EW 95, 04]

* Acceleration @ Internal mildly relativistic shocks Or: External highly relativistic shocks provided B_{up} amplified

A comment on production rates

[e.g. Wick et al. 04 ; Berezinsky 08; Eichler et al 2010]

- Discrepancy due mainly to Assuming UHECRs X-Galactic above ~10¹⁸eV (instead of ~ 10¹⁹eV)
- Requires:
 - Fine tuning

 $(dQ/d\epsilon)_{XG} \sim \epsilon^{-2.7}$ -- Inconsistent with > 10¹⁹eV data

GRBs & UHECRs: Predictions

- CR experiments:
 - Few narrow spectrum sources above $3 \times 10^{20} eV$

[Miralda-Escude & EW 96]

- Difficult to check, even with Auger

- HE v experiments
 - Internal shocks: ~10 (100TeV events)/Gton/yr Accessible to IceCube, Km3Net [EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]
 - External shocks: 10¹⁸eV v's, difficult to detect

Summary: Collisionless shocks

- GRB afterglows-likely e⁻ acceleration in Collisionless, Relativistic (Γ =100 \rightarrow 1), Un-magnetized ($U_{B,up} \sim 10^{-9} \text{ nm}_p \text{c}^2$) shocks
- Challenges:
 - $U_{B,down}$ near equipartition (x10⁹), survive to ω_{p} t~10⁹ (Evidence for $U_{B,up}$ amplification x10⁴ - 10⁶)
 - e⁻ coupling ($\varepsilon_e \sim 0.1$) and acceleration, dn/d $\gamma \sim \gamma^{-2}$
- Current status
 - Test particle understanding of particle acceleration
 - 2D e⁺ e⁻ simulations:

 $\varepsilon_{\rm B}$ grows to 0.01,

- Shock forms @ ~10 c/ $\omega_{\rm p}$, No steady state @ ω_{p} t~10⁴ Survive to ω_{p} t~10⁹? Acceleration to $>\Gamma^2$? Non-thermal particles
- B scale grows, associated with non-thermal particles

e⁺e⁻ = e-p? 2D=3D?

Summary: UHECRs

- >10¹⁹eV particles: Origin, Acceleration not known.
- GRBs- only known sources satisfying all constraints.
 May produce observed flux if accelerate e⁻ and p with similar efficiency.
- Predictions
 - CR experiments:
 - Few narrow spectrum sources above 3x10²⁰eV, Difficult to check, even with Auger.
 - HE v experiments:
 - Internal shocks \rightarrow ~10 (100TeV events)/Gton/yr, Accessible to IceCube, Km3Net.

•AGN: $\Gamma \sim \text{few} \rightarrow \text{L>10^{47} erg/s}$ •GRB: $\Gamma \sim 300 \rightarrow \text{L>10^{51} erg/s}$

[EW 95, 04]

Flux & Spectrum

[[]Katz, Budnik & EW 09]

 >10^{19.3}eV: consistent with protons, E²(dQ/dE) ~10^{43.5} erg/Mpc³ yr + GZK

[EW 1995; Bahcall & EW 03]

E²(dQ/dE) ~Const.: Consistent with shock acceleration

[Krimsky 77; Bednarz & Ostrowski 98; Keshet & EW 05

cf. Lemoine & Revenu 06]

Galactic-ex. Galactic

Transition @ ~10¹⁸eV Fine tuning $(dQ/d\epsilon)_{XG} \sim \epsilon^{-2.7}$ Inconsistent spectrum

Transition @ ~10¹⁹eV Inconsistent spectrum

[Katz, Budnik & EW 09]