# Balloon-borne gamma-ray telescope with nuclear emulsion

### Satoru Takahashi (Nagoya Univ.)

Shigeki Aoki<sup>3\*</sup>, Tsutomu Fukuda<sup>4</sup>, Kaname Hamada<sup>4</sup>, Toshio Hara<sup>3</sup>, Atsushi Iyono<sup>5</sup>, Jiro Kawada<sup>2</sup>, Masashi Kazuyama<sup>4</sup>, Koichi Kodama<sup>1</sup>, Masahiro Komatsu<sup>4</sup>, Shinichiro Koshiba<sup>4</sup>, Hirotaka Kubota<sup>4</sup>, Seigo Miyamoto<sup>4</sup>, Motoaki Miyanishi<sup>4</sup>, Kunihiro Morishima<sup>4</sup>, Naotaka Naganawa<sup>4</sup>, Tatsuhiro Naka<sup>4</sup>, Mitsuhiro Nakamura<sup>4</sup>, Toshiyuki Nakano<sup>4</sup>, Kimio Niwa<sup>4</sup>, Yoshiaki Nonoyama<sup>4</sup>, Keita Ozaki<sup>3</sup>, Hiroki Rokujo<sup>3</sup>, Takashi Sako<sup>4</sup>, Osamu Sato<sup>4</sup>, Yoshihiro Sato<sup>6</sup>, Kazuya Suzuki<sup>4</sup>, Atsumu Suzuki<sup>3</sup>, Satoru Takahashi<sup>4</sup>, Ikuo Tezuka<sup>6</sup>, Junya Yoshida<sup>4</sup>, Teppei Yoshioka<sup>4</sup>

<sup>1</sup>Aichi University of Education, <sup>2</sup>ISAS/JAXA, <sup>3</sup>Kobe University, <sup>4</sup>Nagoya University, <sup>5</sup>Okayama University of Science, <sup>6</sup>Utsunomiya University

\*Project leader

## All sky map in high energy gamma-rays with Fermi Large Area Telescope launched in June 2008



Fermi Large Area Telescope First Source Catalog

Large scale observation has been achieved since CGRO/EGRET (1991). Fruitful results are being obtained in the observation of high energy gamma-ray.

Further precise observation is important as the next step.

### Emulsion gamma-ray telescope



### Performance

|                                                                                           |                                                   | —                                     |
|-------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|
|                                                                                           | Emulsion telescope                                | Fermi LA I                            |
| Angular resolution @100MeV                                                                | 10mrad                                            | 61mrad                                |
| @1GeV                                                                                     | 1.4mrad                                           | 10mrad                                |
| Energy range                                                                              | 10MeV~100GeV<br>(under study below 50MeV)         | 20MeV~300GeV                          |
| Polarization sensitivity                                                                  | Expected (under study)                            | No                                    |
| Aperture area                                                                             | >1m²                                              | 1m <sup>2</sup>                       |
| Field of view (full width)                                                                | $ ightarrow 90^{\circ}$ (1.6sr, 12.5% all of sky) | <b>120°</b> (2.4sr, 19.1% all of sky) |
| Dead time                                                                                 | Dead time free                                    | <b>26.5</b> $\mu$ sec(readout time)   |
| Area*Time [m² day]                                                                        | 16(current)                                       | 365                                   |
|                                                                                           | 507(future)                                       |                                       |
| Emulsion analyzing canability in a year (100 films) (Flight duration: 150hours(6.25days)) |                                                   |                                       |

Emulsion analyzing capability in a year (100 films)

Current system: 3m<sup>2</sup> flight Future system: 80m<sup>2</sup> flight

Long duration flight(150hours) Repeating flight(>4flights/year) Fermi-LAT



Public LAT data (Fermi Science Support Center)

>1-3GeV

>6 months

-2010/01/17 01:02:33 ~ 2010/07/16 00:58:52

>Front + Back

>All incident angle



### Simulation

>150 m<sup>2</sup> hours

-1.5years full scale observation (current)

>Signal

-Flux on Fermi First Source Catalog (1-3GeV) -Point source

- -Angle resolution 1.4mrad @ 1GeV (gaussian)
- >BG

-Atmospheric gamma-ray flux (BETS, >1GeV, 5g/cm<sup>2</sup>)

### Balloon Exp. @ Sanriku (2004)





### Automatic Emulsion Scanning System "S-UTS"

### Emulsion scanning facility

# 5 SUTSs are running constantly.

### Angular resolution



### Energy range





### Multi-stage shifter



S.Takahashi et al., Nucl. Instr. And Meth. A, 620 (2010) 192-195

### Flight model of multi-stage shifter

Co-development with Mitaka Kohki Co., Ltd. Effective area : 12cm\*10cm





### Summary & Outlook

- By detecting starting point of electron pair with emulsion, precise gamma-ray direction and polarization can be detected.
- With recent advancement in scanning system, emulsion analyzing capability is becoming powerful.
- By basic study, the perspective has been obtained for the observation of cosmic gamma-ray with emulsion.
- Emulsion gamma-ray telescope can do complementary observation for Fermi LAT
- We start the observation of cosmic gamma-ray by balloon flight with emulsion gamma-ray telescope.
  - − The 1st model (aperture 1/10m) → flight ready
    - Test under the balloon flight environment with the flight duration above several hours
    - Measurement of background
    - (Observation of transient phenomena)
  - The 2nd model (aperture 1/2m)  $\rightarrow$  flight ready by next spring
    - Observation of known gamma-ray object with the flight duration above 6h
       3sigma detection for Geminga with 1m<sup>2</sup> hour
    - Test with over all
    - (Observation of transient phenomena)
  - The future model (aperture >1m)
    - Starting full scale observation with long duration flight(150hours) and repeating flight(>4flights/year)