Status and Perspetives of the CALET (Calorimetric Electron Telescope) Mission for Japanese Experiment Module on ISS

on behalf of the CALET Mission Team

22nd ECRS August 3, 2010 Firenze University

International Collaboration Team

O. Adriani²⁰, F. Angelini²¹, C. Avanzini²¹, M.G. Bagliesi²³, A. Basti²¹, K. Batkov²³,
G. Bigongiari²³, W.R. Binns²⁵, L. Bonechi²⁰, S. Bonechi²³, S. Bottai²⁰, M. Calamai²⁰,
G. Castellini²⁰, R. Cesshi²³, J. Chang¹³, G. Chen⁴, M.L. Cherry⁹, G. Collazuol²¹, K. Ebisawa⁵,
A. J. Ericson¹⁰, H. Fuke⁵, W. Gan¹³, T.G. Guzik⁹, T. Hams¹⁰, N. Hasebe²⁴, M. Hareyama⁵,
K. Hibino⁷, M. Ichimura², K. Ioka⁸, M. H. Israel²⁵, E. Kamioka¹⁶, K. Kasahara²⁴,
Y. Katayose²⁶, J. Kataoka²⁴, R.Kataoka¹⁸, N. Kawanaka⁸, M.Y. Kim²³, H. Kitamura¹¹,
Y. Komori⁶, T. Kotani¹, H.S. Krawzczynski²⁵, J.F. Krizmanic¹⁰, A. Kubota¹⁶, S. Kuramata²,
Y. Ma⁴, P. Maestro²³, V. Malvezzi²², L. Marcelli²², P. S. Marrocchesi²³, V. Millucci²³,
J.W. Mitchell¹⁰, K. Mizutani¹⁵, A.A. Moissev¹⁰, M. Mori¹⁴, F. Morsani²¹, K. Munekata¹⁷,
H. Murakami²⁴, J. Nishimura⁵, S. Okuno⁷, J.F. Ormes¹⁹, S. Ozawa²⁴, F. Palma²², P. Papini²⁰,
Y. Saito⁵, C. De Santis²², M. Sasaki¹⁰, M. Shibata²⁶, Y. Shimizu²⁴, A. Shiomi¹², R. Spalvoli²²,
P. Spillantini²⁰, M. Takayanagi⁵, M. Takita³, T. Tamura⁷, N. Tateyama⁷, T. Terasawa³,
H. Tomida⁵, S. Torii²⁴, Y. Tunesada¹⁸, Y. Uchihori¹¹, S. Ueno⁵, E. Vannuccini²⁰, H. Wang⁴,
J.P. Wefel⁹, K.Yamaoka¹, J. Yang¹³, A. Yoshida¹, K. Yoshida¹⁶, T. Yuda⁷, R. Zei²³

Aoyama Gakuin University, Japan
 Hirosaki University, Japan
 ICRR, University of Tokyo, Japan
 Institute of High Energy Physics, China
 JAXA/ISAS, Japan
 Kanagawa University of Human Services, Japan
 Kanagawa University, Japan
 KFK Japan

8) KEK, Japan

9) Louisiana State University, USA

10) NASA/GSFC, USA

11) National Inst. of Radiological Sciences, Japan

- 12) Nihon University, Japan
- 13) Purple Mountain Observatory, China

- 14) Ritsumeikan University, Japan
- 15) Saitama University, Japan
- 16) Shibaura Institute of Technology, Japan
- 17) Shinshu University, Japan
- 18) Tokyo Technology Inst., Japan
- 19) University of Denver, USA
- 20) University of Florence and INFN, Italy
- 21) University of Pisa and INFN, Italy
- 22) University of Rome Tor Vergata and INFN, Italy
- 23) University of Siena, Italy
- 24) Waseda University, Japan
- 25) Washington University in St Louis, USA
- 26) Yokohama National University, Japan

CALET Overview

□ Instrument

High Energy Electron and Gamma- Ray Telescope Consisting of (from bottom to top):

- Total Absorption Calorimeter (TASC) (Energy Measurement, Particle ID) PWO 20mm×20mm×320mm Total Depth of PWO: $2(X_0/123\lambda)$

- Imaging Calorimeter (IMC) (Particle ID, Direction) Total Thickness of Tungsten (W) 3X₀.0.11λ Layer Number of Scifi Belts: 8 Layers ×2(X,Y)
 - Silicon Pixel Array + Trans Iron Detector (SIA+TID) (Charge Measurement in Z=1-35 + flux Measurements up to Z=60) Silicon Pixel 11.25mmx11.25mmx0.5mm 2 Layers with a coverage of 54 x54 cm² + 2 cherenkov (x,y strip) counters

CALET Performance for Electron Observation

CALET: main objectives

I – High resolution measurements of energy spectrum of electrons for:

- I A: research of DM signal
- I B: research of KK DM
- I C: research of astrophysical sources signals
- I D: measurement of dipolar anisotropy
- I E: study of solar modulation (@ low energy)

II – Measurements of VHE charged Cosmic Rays:

- II A: research of a cut-off in the H and He spectra in multiTeV region
- II B: measurement of energy spectra and fluxes of nuclei up to Fe
- II C: determination of the diffusion parameter from the secondary-to-primary ratios (e.g. B/C, N/O, sub-Fe/Fe)
- II D: fluxes measurement of trans-iron nuclei (up to Z=36) and ultra heavy nuclei (up to Z=60)

III – Measurements of gamma-ray energy spectrum:

- III A: high resolution study of line-shape of a possible DM signal
- III B: study of transient phenomena by Gamma Ray Burst monitor

I – A: research of DM signal

I – B: Kaluza-Klein Dark Matter search

I – C: research of astrophysical sources signals

Electron Observation for Nearby Sources el. efficiency 0.7, p reject. 10⁵, 0.12m²sr, 5y

Energy range (GeV)	e- calculated from fit to FERMI +HESS data (counts)	e- expected from Vela +Vela (counts)
30-39	488222	488222
39-52	276586	276586
52-69	156532	156532
69-91	88469	88469
91-119	49913	49913
119-157	28095	28095
157-207	15766	15766
207-274	8811	8811
274-361	4898	4898
361-475	2704	2704
475-627	1479	1479
627-826	799	799
826-1089	425	425
1089-1436	221	221
1436-1893	112	112
1893-2495	55	55
2495-3289	25	29
3289-4336	11	18
4336-5716	4.5	11
5716-7536	1.6	5
7536-9934	0	2.3

I – D: Contribution to asymmetry from nearby sources

|--|

E range (TeV/n)	Proton	He
0.4-0.7	967734	128408
0.7-1.2	402176	56356
1.2-2.0	167138	24733
2.0-3.5	69460	10855
3.5-5.9	28866	4764
5.9-10.0	11996	2091
10.0-16.9	4986	918
16.9-28.8	2072	403
28.8-48.9	861	177
48.9-83.0	358	78
83.0-140.9	149	34
140.9-239.3	62	15
239.9-406.4	26	6.6
406.4-690-2	10.7	2.9
690.2-1172.1	4.4	1.3
>1172.1	1.8	0

II – B: measurement of energy spectra and fluxes of nuclei up to Fe

SIA prototype developed by INFN in the frame of the MATRIX project

<u>II – C: determination of the diffusion parameter from the</u> <u>secondary-to-primary ratios (e.g. B/C, N/O, sub-Fe/Fe)</u>

II – D: fluxes measurement of trans-iron nuclei (up to Z=36)

Element	z	E> 2.5 GeV/n	E>10 GeV/n	E>20 GeV/n	E> 30 GeV/n	E> 50 GeV/n	
Fe	26	13443043	1462856	482563	252236	111391	
Co	27	61074	5627	1708	850	353	
Ni	28	617269	76096	26718	14485	6698	
Cu	29	13151	1492	502	266	119	
Zn	30	9423	1084	368	195	88	
Ga	31	1376	160	55	29	13	
Ge	32	1865	221	76	41	18	
As	33	444	53	18	10	4	
Se	34	858	103	36	19	9	
Br	35	530	64	22	12	6	
Kr	36	473	58	20	11	5	

[TIGER, 2 flights]

II – D: and ultra heavy nuclei (up to Z=60)

III – A: high resolution study of line-shape of a possible DM signal

[Neutralino decay, Bergstrom 2001]

The CALET mission has been approved to proceed to the Phase B in target of launching in summer, 2013.

Future Plan of JEM/EF (as ~2013)

Field of View (45 degrees from the zenith)

Launching Procedure of CALET

H2-B Transfer Vehicle (HTV)

H-IIB Rocket

Separation from H2-B

Approach to ISS

Thank you for your attention

