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Summary

> Physical reasons to study the nuclear
component of CR

> The PAMELA experiment
> How to use sub-detectors to identify nuclel

» Charge calibration and resolution for
PAMELA sub-detectors
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The chemical composition of cosmic rays is a
crucial piece of information and is becoming
well determined at energies below the knee,

where direct measurements can still be
carried out, while it is more uncertain and
model dependent at higher energies.

The composition of low energy cosmic rays
provides important hints to the acceleration
processes and the propagation of cosmic rays
through the interstellar medium (ISM).

Especially important in this respect are the
abundances and spectra of elements
produced as secondaries of primary cosmic
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Elements such as Boron, Beryllium and Lithium,
which are mainly produced as secondaries of
primary cosmic rays,can be very useful..

The ratio of secondary to primary.
(for instance B/C) cosmic ray fluxes provides
a unigue tool to characterize the diffusion properties

of the ISM. Existing measurements of this ratio

as a function of energy suggest that the diffusion
coefficient scales with energy as D(E)~E®

with a~0.6, at least at rigidities below: 10/ GV,
while it is not clear whether at higher energies the

slope remains constant or there is a flattening.
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The PAMELA experiment

Search for antimatter
Search for dark matter
Study ofi cosmic-ray
propagation

Study selar physics and
solar modulation

Study of electron
spectrum

Study terrestrial
magnetosphere

Eirst switch-on on June
2 i g v20]0]6)

Continuous data taking

mode since 11th July
240)0]6

Mission extended till
December 2011
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Main requirements

PAMELA apparatus

- high-sensitivity particle identification, precise momentum measure.
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' Time-Of-Flight

plastic scintillator strips + PMT:

= trigger, albedo rejection;

= mass identification up to E ~ 1 GeV;
—3

Magnetic spectrometer
with microstrip Si tracker:
= charge sign and momentum

from the curvature;
—3

Electromagnetic calorimeter
W/Si sampling; 16.3 X0:
— discrimination e*/ p, e/ pr
from shower topology;
= direct E measurement for e-.
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Charge identification
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Bethe Bloch
ionization energy-loss of heavy (M>>me) charged particles

A particle traversing the PAMELA instrument crosses:

*six layers of plastic scintillators (ToF),
*six silicon tracker layers (Tracker)
-at least, the first silicon plane of the calorimeter (Calo)

4

13 independent measurements of the dE/dx to evaluate
the Z of the particle*.
3 charge determining detectors ToF, Tracker, Calorimeter

J

*Particles that do not undergo charge-changing interactions ZToF Ztrk ZCan
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PAMELA Tracker system

Characteristics:

e 6 planes double-side (x&y view)
microstrip Si Sensors

e 36864 channels
Performances:

e Spatial resolution: 3-4um

e NDR ~1TV (from test beam data)
e Dynamicrange Z=1tcZ=4

Charge signal due to ionization| losses inside Sij, integrated oni clusters of strips,
IS converted into dE/dx measurement by means of a linear scale; each plane has
been calibrated independently.
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Charge measurements with tracker.
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PAMELA Calorimeter

Characteristics:

44 Si layers (X/Y) +22 W planes
16.3 X, /0.6 |;

4224 channels

Dynamic range 1400 mip

Se)lf—trigger mode (> 300 GeV GF~600 cm?
Sr

Performances:

p-bar and e* selection efficiency ~ 90%
p rejection factor >102°

e rejection factor > 107

Energy resolution ~5% @200GeV

Also in this case a linear scaling function was calculated to convert charge

signal inte dE/dx for each layer.
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Charge measurements with Calorimeter
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Charge measurements with Calorimeter

h
Entries 68511
Mean 5.901

E_C 599 + 0.29 RMS 0.6765
B 4.98+0.25
- Be 3.99 + 0.23
FLi 3.00+0.18

Charge separation of the Calorimeter for nuclei pre-selected by the ToF
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PAMELA ToF system

Characteristics: A very complicated charge
e 06 layers (3 planes, double calibration:

VieW) of BC404 plaStiC 6 different groups i

scintillator scintillators + 48 different

e 24paddles e PMTs — 48 independent
e 48 photomultipliers scaling procedure

Performances: | . Loss of linearity of the
e Time resolution: A l instrument due to
e 250 ps protons Birks’saturation of
e 70 ps Carbon scintillators and loss of gain
e Dynamic range _ of PMTs at high values of
7=1t07Z =8 charge deposits — scaling
e functions from ADC signal to
* Only relativistic Oxygen = dE/dx measurement are not
| linear.
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Charge measurements in a ToF paddle

Entries 191569

dE/dx vs. [ distribution in a paddle
<— (after corrections for attenuation,
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All ToF dEadx
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Charge identification inia TOF plane
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Sample of nuclei selected by requiring charge consistency between
Calorimeter and S11 ToF layer
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Charge identification

For nuclel analysis:
> ToF system is used as main charge detector

> Z,, IS used to select heavier nuclel in the "background
of protons and helium

> Z.., IS Used to study the efficiency of the selection cuts.

For details concerning selection criteria and scientific results see
poster presented by
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Step 3: compensation of saturation
respect to the Bethe-Block

Fit of Bethe-Block function on He bands

Entries 132170
2 6.299e+04 / 254 d
0 D10

» Scatterplot of dEdx after step 2 vs
expected one, which is the value from
Bethe-Block for associated Z, from
calorimeter and 3, from ToF

* Fit of the trend using a pol2 function
(higher plot on the right)
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