

High energy cosmic-ray proton and helium spectra

Alexander Karelin

on behalf of the PAMELA collaboration

22-ND EUROPEAN COSMIC RAY SYMPOSIYM

August 3-6, 2010, Turku, Finland

Schematic of the calorimeter and ToF structure

S1, S2, S3; double layers, x-y
plastic scintillator (8mm)
ToF resolution 300 ps (S1-3 ToF >3 ns)

44 Si-x / W / Si-y planes (380)
16.3 X0 / 0.6 L
dE/E ~5.5 % (10 - 300 GeV)

1. The total energy deposit distribution

Without any selection

Selection criteria

1. High energy shower inside calorimeter

- 2. A shower axis line is inside an aperture
- 3. A starting point of shower out of 12-22 calorimeter layer
- 4. To cut electron events showers initiated in firsts layers of calorimeter were rejected
- 5. To cut He events ionization losses in ToF scintillators were using

2. The total energy deposit distribution

After selection

3. The Etot/Nhit distribution

The selection efficiency by simulated data and it uncertainty

The measured proton spectrum

Helium analysis

Conclusion

1.The method of measurement high energy proton and helium cosmic ray spectra based on PAMELA calorimeter signal has been developed

2.New results for 100 GeV-15 TeV energy range with 3 years statistics have been obtained

