

MEASUREMENT OF THE COSMIC-RAY ELECTRON SPECTRUM WITH THE FERMI LAT

> Luca Baldini INFN-Pisa luca.baldini@pi.infn.it

on behalf of the Fermi LAT collaboration

22nd European Cosmic Ray Symposium Turku, August 3, 2010

## The Fermi observatory



#### Large Area Telescope (LAT)

- Pair conversion telescope.
- Energy range: 20 MeV-> 300 GeV
- Large field of view (≈ 2.4 sr): 20% of the sky at any time, all parts of the sky for 30 minutes every 3 hours.
- Long observation time: 5 years minimum lifetime, 10 years planned, 85% duty cycle.



#### Gamma-ray Burst Monitor (GBM)

- ▶ 12 Nal and 2 BGO detectors.
- ► Energy range: 8 keV-40 MeV.

### THE LAUNCH Just turned two years in orbit



- ▶ Launched on June 11, 2008 from the Kennedy Space Center.
- ▶ Launch vehicle: Delta 2920H-10.
- ▶ Circular orbit, 565 km altitude, 25.6° inclination.
- Some of the milestones: > 11000 orbits, 100 billion triggers on February 18 2010, ≈ 25 billion events downlinked, > 99% uptime.
- D. Thompson will review the scientific highlights on Friday afternoon!

# THE LARGE AREA TELESCOPE

#### Large Area telescope

- Overall modular design.
- $4 \times 4$  array of identical towers (each one including a tracker and a calorimeter module).
- Tracker surrounded by an Anti-Coincidence Detector (ACD)



# THE LARGE AREA TELESCOPE

#### Large Area telescope

- Overall modular design.
- ▶ 4 × 4 array of identical towers (each one including a tracker and a calorimeter module).
- Tracker surrounded by an Anti-Coincidence Detector (ACD)

#### Tracker

- Silicon strip detectors, W conversion foils; 1.5 radiation lengths on-axis.
- 10k sensors, 80 m<sup>2</sup> of silicon active area, 1M readout channels.
- High-precision tracking, short instrumental dead time.

#### Anti-Coincidence Detector

- Segmented (89 tiles) to minimize self-veto at high energy.
- 0.9997 average efficiency (8 fiber ribbons covering gaps between tiles).

#### Calorimeter

- 1536 Csl(Tl) crystal; 8.6 radiation lengths on-axis.
- Hodoscopic, 3D shower profile reconstruction for leakage correction.

## FLIGHT EVENT DISPLAYS

#### Candidate electron 475 GeV raw energy, 834 GeV reconstructed



- Clean main track with extra clusters close to the track (note backsplash from the calorimeter).
- Relatively few ACD tile hits, mainly in conjunction with the track.
- Well defined (not fully contained) symmetric shower in the calorimeter.

#### Candidate hadron

#### 823 GeV raw energy, 1 TeV reconstructed



- Small number of extra clusters around main track, many clusters away from the track.
- Different backsplash topology, large energy deposit per ACD tile.
- Large and asymmetric shower profile in the calorimeter.

- All the three LAT subsystem contribute to the rejection of the hadronic (mainly protons) background
  - The measurement of the shower development in the calorimeter plays a prominent role
- ▶ Peak effective geometry factor of almost ≈ 2.8 m<sup>2</sup> sr around 50 GeV
  - Given the large statistics, the *knowledge* of the effective geometry factor dominates the systematic uncertainties
  - Quantified by means of extensive analysis of data/Monte Carlo discrepancies using both flight and beam test data
  - Data/Monte Carlo also exploited to provide feedback to the selection
- ► The estimated hadronic contamination after the electron cuts is below  $\approx 20\%$ 
  - Background rate subtracted from the rate candidate electrons

### ENERGY RECONSTRUCTION



Luca Baldini (INFN-Pisa)

# PHYS. REV. LETT. 102, 181101 (2009)



#### What's new since then?

- CRE analysis paper submitted to Physical Review D
  - ▶ Detailed description of the electron analysis, spectrum extension down to ≈ 7 GeV, cross check with an alternative event selection optimized for energy resolution
- CRE anisotropy paper submitted to Physical Review D

## LOW-ENERGY EXTENSION



- Need to take into account the effect of the Geomagnetic field
- Rigidity cutoff depends on the detector geomagnetic position
  - $\blacktriangleright~\approx 7~\text{GeV}$  is the minimum energy accessible in the Fermi orbit
- Data are divided in 10 independent McIlwain L bins
  - For each energy bin only the McIlwain bins for which the measured cutoff is significantly below the low edge are used

## LOW-ENERGY EXTENSION



 Almost 8M electron candidates collected in the first year of operations

- More than 1000 in the highest-energy bin (772–1000 GeV)
- The new (low energy) data point exacerbate the tension with the hypothesis of a single power law.

# SPECTRUM INTERPRETATION



Hard to get a good fit with a single-component diffusive model

- ► Good fit possible with an additional high-energy component
  - If it's an e<sup>+</sup>/e<sup>-</sup> (e. g. nearby pulsars or dark matter), the Fermi spectrum and Pamela positron fraction can be simultaneously fitted

### ALTERNATIVE EVENT SELECTION Optimized for energy resolution



- Test possible systematic effects related to the energy resolution of the detector
- ► Events with long path (13 X<sub>0</sub> min, 16 X<sub>0</sub> average) in the instrument and contained in a single calorimeter module
  - Energy dispersion much narrower and more symmetric, energy resolution better than 5% (1σ) up to 1 TeV
  - Acceptance reduced to 5% of the standard one

### ALTERNATIVE EVENT SELECTION Optimized for energy resolution



- The two spectra are consistent within the systematic errors
- Long path selection only optimized for energy resolution
  - More challenging in terms of systematics (small sample)
  - Really a cross check, not necessarily more accurate!

Luca Baldini (INFN-Pisa)

# SEARCH FOR ANISOTROPIES



► The *no anisotropy* map accounts for non uniform exposure

Two different methods: shuffling and direct integration

## SEARCH FOR ANISOTROPIES

- More than 1.6M candidate electrons above 60 GeV collected in the first year of operation.
- The whole sky was searched for anisotropies in Galactic coordinates
  - ▶ Healpix pixelization scheme (12288 pixels,  $\approx 3~{\rm deg}^2$ ) used for the skymaps
- Search for possible anisotropies with different energy thresholds and on different angular scales:
  - Direct bin-to-bin comparison
  - Integrated skymaps with different ROIs (10–90°)
  - Spherical harmonic analysis
- ▶ Upper limits for the dipole case ranging from  $\approx 0.5\%$  (above 60 GeV) to  $\approx 5\%$  (above 480 GeV)
  - Comparable to the values expected for a single nearby source dominating the high-energy electron spectrum

# CONCLUSIONS

- ► Fermi has published the first systematic-limited measurement of the Cosmic-Ray Electron spectrum up to 1 TeV
- Now extended down to the lowest energy accessible by the Fermi-LAT, given its orbit
  - Covering almost 2.5 decades in energy
- ► No evidence for anisotropies in the arrival directions of CREs above 60 GeV
  - Upper limits (a fraction of % to tens %, depending on the energy threshold/angular scale) are already interesting in terms of modeling
  - Will improve as more data are collected

opace l'elescope