

C. Meurer¹, N. Scharf¹

on behalf of the Pierre Auger Collaboration²

¹ Phys. Inst. III A, RWTH Aachen University, Aachen, Germany ² Observatorio Pierre Auger, Av. San Martin Norte 304, (5613) Malargüe, Mendoza, Argentina

Exploring the nature of cosmic rays at the transition region (galactic/extragalactic)

Rich physics potential in energy range between

- 2nd knee and ankle
- Transition from galactic to extragalactic cosmic rays is expected to happen in this region
- Expect different type of cosmic ray sources and therefore also a change in composition
- Several independent measurements with different methods of composition determination desirable for this energy region

Methods to determine composition:

- Fluorescence detectors like Auger telescopes: X_{max} = atmospheric depth at which the longitudinal development of a shower reaches its maximum in terms of number of secondary particles
- Surface detector arrays with electron/muon separation like KASCADE:
- electron-muon number ratio

High Elevation Auger Telescopes Auger low energy enhancement HEAT

Event seen in HEAT and Coihueco on

- Three additional tiltable fluorescence telescopes close to existing fluorescence telescopes (Coihueco)
- Lowering energy threshold of Auger by one order of magnitude down to 10⁷ eV by extending the field of view in elevation:
- 0°-30° (standard Auger telescopes) + 30°-60° (HEAT)

- Monitoring of camera position in optical aperture of telescope in tilted position to guarantee stability of camera position
- Upgraded electronics to handle increased trigger rates

A shower is only used for physics analysis if the reconstructed shower maximum X_{max} is in the field of view of the fluorescence telescopes. Low energy showers emit less fluorescence light and therefore they can only be detected closer to the telescope.

 \rightarrow This geometric bias is reduced by the additional field of view of HEAT at higher elevation.

- Installation of HEAT finished in 2009
- Data taking since September 2009

• Duty cycle of HEAT: 15% (only in moonless nights) \rightarrow same duty cycle as standard Auger telescopes • HEAT trigger rate: ~1 trigger/min \rightarrow 10 x higher than trigger rate of standard Auger

telescopes, as assumed from steeply decreasing energy spectrum

• First physics results expected in 2011

 Φ_{shower}

Top view

 ϕ_{detector}

HEAT detects more showers closer to the detector and less at larger distance.

HEAT is less dependent on whether a shower crosses its field of view from the front or back.

- $\phi_{detector}$

telescope data

HEAT data standard fluorescence

<u>References</u>

[1] NASA Hubble Space Telescopes Wide Field and Planetary Camera 2 (1999, 2000) [2] X-ray: Chandra X-ray Observatory, NASA/CXC/CfA, R.Kraft et al. [3] Submillimeter: MPIfR/ESO/Atacama Pathfinder Experiment (APEX) telescope, A.Weiss et al. [4] Optical: Wide Field Imager on the Max-Planck/ESO 2.2 m telescope

[5] T. Antoni et al., Astropart. Phys. 24 (2005) 1 [6] The Pierre Auger Collaboration, Phys. Rev. Lett. 104 (2010) 091101

Deutsche Forschungsgemeinschaft DFG

ECRS 2010, Turku, Finland, Aug. 2010

of Education and Research