Solar energetic particle measurements with EPD/LET

E. Valtonen¹⁾ for the Solar Orbiter EPD/LET Team ¹⁾ Space Research Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Finland

Science goals, instrument capabilities and measurements

Sources, acceleration mechanisms, and transport processes of SEPs

When does ion acceleration start and when is a shock most effective in accelerating particles?

- Where and when CME energy is converted to SEP energy
- How is acceleration related to changing magnetic geometry 0
- Sources of ion spectral breaks

Why is the CME acceleration efficiency so variable?

- Why are gradual SEP event intensities and composition so variable
- Effects of the conditions in the inner heliosphere and IP space

 Proton amplified Alfven waves in shocks 	
Impulsive SEP events	
 Why is ³He enrichment so variable 	
 Causes of enrichments of trans-Fe elements 	
 Variations of successive SEP event composition from the same 	
active region	
Role of hybrid SEP events	
 Significance of flares in gradual SEP events 	
 Association of impulsive SEP events with large flares 	
 Association of ions with jets of narrow fast CMEs 	
Escape of particles to the heliosphere and scattering and transport along	
IP magnetic field	
 Role of various escape mechanisms 	
 Solar wind turbulence 	
 Lateral transport 	
laborative observations with other EPD sensors and other Solar Obiter	

1. A	SOLAR EROPHON		
	Measured species		p, ³ He, ⁴ He, C, N, O,, Fe, trans-Fe
	Energy ranges All particles (main	Protons ⁴ He Oxygen Iron Iy p, 4He)	1.5 - 20 MeV 1.5 - 20 MeV/n 2.6 - 40 MeV/n 3.3 - 60 MeV/n 0.5 - 1.5 MeV/n (single detector counts)
	Isotopes		³ He/ ⁴ He, ²² Ne/ ²⁰ Ne, ²⁶ Mg/ ²⁴ Mg
	Time resolution	Nominal urst mode	10 s 1 s
	View cones Number of Separation of view cone	apertures directions	6 60°, in and out of ecliptic plane

/iew cones Number of apertures Separation of view cone directions Full view cone size Angular resolution	6 60°, in and out of ecliptic plane 40° 14º/40°
Geometric factors/view direction Protons and helium Heavy ions (and p, He)	6x0.0024 cm ² sr (hi-flux conditions) 6x0.21 cm ² sr (nominal)

Shaping

amplifiers

Charge-

sensitive

preamp

.

V20

• Sensor system

Col

instruments

- Three silicon detector telescopes in different directions
- Two identical units
- Electronics
 - Charge amplification and pulse shaping
 - AD-conversion
 - Digital control
- Software
 - Particle identification
 - Energy spectra
 - Anisotropy tables

Preliminary

Well-proven dE-E-technique of particle identification

- Energy loss patterns in successive detector layers
- Charge and mass identification
- Limited by angle of incidence variation and detector thickness nonuniformity

Particle identification

Energy loss in D2 (MeV)

Accommodation and field of view

(MeV)

0.1

Quantity	Total for two units
Mass (kg)	2.2
Power (W)	4.9
Envelope dimensions (cm ³)	2x(22x15x11)
Telemetry (bits/s)	1000

Preliminary data collection scheme

100

- 10-second buffers from each LET unit
- 13 energy channels for p, ³He, ⁴He
- p and ⁴He anisotropy spectra
- 6 directions
- 4 channels in each direction
- Fast counters for p, He, CNO, and Fe group
- 4 energy channels
- Fast counters for
 - Single detector hits
- Acceptable events
- False event recognition
- For normalization purposes
- Samples of pulse height data

