PECULIARITIES OF MICROWAVE RADIO BURSTS AND CORONAL ACTIVITY FROM THE SOLAR FLARES PRECEDING TO THE LARGE FORBUSH DECREASE

V.Prokudina¹, M.Slivka², K.Kudela²

¹ Sternberg Astronomical Institute, Moscow State University, Moscow, Russia

² Institute of Experimental Physics SAS, Košice, Slovakia

Abstract

From the observational data NM Lomnicki Stit during 1997-2006 we analyzed the Forbush Decrease (FD) events with large amplitudes (>4-6%). For these events the features of solar flares at optical and radio ranges were studied.

As the rules, the flares preceding to the large FD were characterized by the power microwave bursts (f=15.5 GHz) with fluxes increased to $10^2 - 10^3$ times. Usually during these flares were observed radio bursts of II,III types, CME with large velocities, disturbances at solar wind and geomagnetic storms with Dst < -100 nT (if Bz<0 exists) and with delay about 2 days.

The relations between FD and microwave bursts may be explained by the large amount of plasma and accelerated particles, ejected during the flares with power microwave and hard X-ray (HXR) bursts.

Introduction

The study of the solar flares at various energetic ranges during the period preceding to the large Forbush Decreases (FD) is very important from the practical point of view, when we analyze the Space weather [1] and also for theoretical research. It is known, that after the flares we observed the disturbances in the interplanetary medium, at the solar wind, in the structure of magnetic field during the propagation of coronal mass ejections (CME), magnetic clouds and shock waves. The increase of the density at the space near the Sun, caused by the ejections of the plasma during the flare, is the important condition for decrease the flux of the galactic cosmic rays, registered at the Earth (Forbush Effect). From the data of Pioneer-10, 11 and Voyager -1,2 satellites are FD observing to orbit of Neptune.

At the various publications are analyzed the connection of FD with geomagnetic storms [2], the parameters of solar wind [3,4] and with features of CME [5-8].

About the plasma, ejected during the flares, we may judge from the observations of CME, magnetic clouds (MC) and radio bursts of II and IV types, which characterized the spread of shock wave and the plasmoid through the solar corona.

As the significant parameter, determined the plasma ejection, we may consider the flux of microwave radio emission F_{max} and hard X-ray F_{x} , because its caused by the processes of the acceleration and energy exit at the flare [9]. According to the statistical analysis, 60-84% of the events with CME-halo type and velocity V_{cme} >1000 km/s are

connected with microwave bursts at frequency range f=2 -20 GHz and the flux F_{max} >1000 units [10].

The comparison of the radio bursts of VLA, Nancay (150 -450 MHz), Nobeyama (17 GHz) with CME (SOHO) also give the basis to the study of the connection microwave emission and the ejection of plasma during the flare.

The analysis of the observational data

With the purpose of the investigation of the flares with large fluxes of microwave emission and their comparison with the periods of FD, we select the events of the solar flares with the radio bursts at frequency f=15.4 GHz and the flux F_{max} >1000 units $(10^{22}W/m^2.Hz)$ during the period 1997-2006. These data we compared with the observations at the Neutron Monitors (NM). The list of the events, registered at the various stations, we may find at the sites of Lomnicky Stit [11], NIZMIRAN, Moscow [12], Oulu [13]. Several events from these data, the more important, are given at the Table 1.

This Table contents the dates of FD observation and decreases of intensity at %. For these periods are given the chromospheric flares (date, Importance, coordinates, number of Active Region), the flux of radio emission (F_{max}) at f=15,4 GHz, the bursts of II,IV types of metric and hectometric ranges [14,15] and velocities of CME from the Catalogue of SOHO [16,17]. Besides are included the Dst, determined the geomagnetic storms during the period of FD [18]. For the some events we have considered the solar fluxes of hard X-ray (HXR) Fx at the rather energy range E from the data of RHESSI [19]. At last, we marked the events with GLE (Ground Level Enhancement), registered at Lomnicky Stit and discussed at [20] and gamma-ray (g) from Yohkoh [22].

From the analysis of the Table 1 it follows that the flares, preceding to the large FD were usually of X and M Importance, developed at the sunspot groups with complex magnetic fields and localized at the geo-effective longitudes. The flares are accompanied by the radio bursts of II, IV types, CME with the large velocities and the geomagnetic storms with Dst < -100 nT. At these flares the flux of microwave exceed the value F_{max} =1000 units. In the events with large Forbush Decreases the fluxes at frequency 15.4 GHz increased to the two orders.

As the example, we select the events at the next periods: X-XI, 2003, VII.2000, I 2005, XI 2004, XII 2006, when the FD were more, than 10-20%. At all these cases the flux of microwave bursts achieved the extreme values $F=10^4 - 10^5$ units. (see the Table 1). It is noticed, that the most of the events with FD 3-4%, as a rule, corresponded to $F_{max} > 1000$ units.

At the Figures 1-4 are given the temporal profiles of FD for the several important events, registered at the Lomnicky Stit [11].

Besides of the microwave emission from the solar flares, for the comparison with FD the HXR bursts are of especial interest, if we may judge from the observational data of RHESSI [19]. The data for several events are given at the Table 1. It is known, that HXR during the power flares increased to a great extent, similar to the microwave bursts, and characterized the acceleration and plasma motion. From the data of Table 1 we conclude, that to the events of FD preceded the flares with large HXR bursts and the fluxes $Fx=10^6$ units at range E=50-100 keV.

As concerned to the geomagnetic disturbances during the most of events, given at the Table 1, geomagnetic storms with Dst < -100 nT were observed (with the condition for

solar wind Bz<0). The onset of geomagnetic storms, as usually, observed with delay aproximately during the two days relatively to the explosive phase of the flare. It is noticed, that exist the problems at the study of the connection FD and geomagnetic storms [1] and may be it is possible to consider in details the various features of solar wind, CME, shock wave and interplanetary disturbances, MC and corotating interaction regions as a complex for every special period of FD, and in addition to take into account also the peculiarities of microwave and HXR bursts from the flares.

Conclusion

At the flares, preceding to the large Forbush effect with the decreases more 3-10 % are observed the fluxes of microwave radio bursts at the f=15.4 GHz with amplitudes F_{max} =10³-10⁴ units.

We suppose, that microwave radio and hard X-ray emission, caused by the plasma ejection and the acceleration of energetic particles during the flares, together with CME and MC, may be the precursor of Forbush Decreases appearance and determined its physical features.

Acknowledgements.

The work of M.Slivka and K.Kudela was supported by the VEGA Grant agency: project 2/0081/10 and also by ITMS project 26220120009.

References

- 1. K.Kudela, R Brenkus, J.Atm.Sol.-Ter.Phys., 66, 1121-1126. 2004
- 2. K. Kudela, M.Storini , J. Atm. Sol-Ter. Phys., 67, 907-912. 2005
- S.C. Kaushik, A.K.Shrivastavi, H.M.Rajput, Proc 29 ICRC, 2 ,151-154, Puna, 2005
- 4. R.F.Penna, A.C.Quillen, J.Geophys.Res.,**110**, A09S05, doi:101029/ 2004JA010912, 2005
- 5. S.O.Ifedili, Earth Plan.Space ,58,659-666.2006
- 6. S.W.Kahler, G.M.Simnett, Proc 29 ICRC, 2, 267-270, Puna, 2005
- 7. Su Yeon Oh, Lu Yi, Y.H.Kim, J.Geophys.Res., 113, AO1103, 2008
- 8. R.K. Mischra, R.Agarwal, Brazilian Journ.of Phys., **38**, No.4., 2008
- 9. Chik-Yin-Lee, H.Wang, Solar Phys., 195, 149-164. 2006
- 10. Brian I. Dougherty, H.Zirin, K.Hsu, Statistical Correlation between Solar Microwave Bursts and Coronal Mass Ejections, Preprint 2006
- 11. http://neutronmonitor.ta3.sk/archive
- 12. http://helios.izmiran.rssi.ru/cosray/images/events
- 13. http://cosmicrays.oulu.fi/
- 14. http://www.sel.noaa.gov/ftpdir/indices/
- 15. http://cdaw.gsfc.nasa.gov/CME_list/radio/wave_type2.html
- 16. http://cdaw.gsfc.nasa.gov/CME_list/
- 17. http://cdaw.gsfc.nasa.gov/CME_list/daily-plots/
- 18. ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/DST/

22nd European Cosmic Ray Symposium, 3-6 August 2010, Turku, Finland, 1.57

- http://hesperia.gsfc.nasa.gov/hessidata
 K.Kudela, R.Langer, Proc.30th Int.Cosmic Ray Conf .V.1 (SH),205-208,2008
- 21. Bardurrin, Journ.Astrophys.Astr., 27, 209-217.2006
- 22. http://gedas22.stelab.nagoya-u.ac.jp/HXT//cataloque/grs html/grs evt list.html

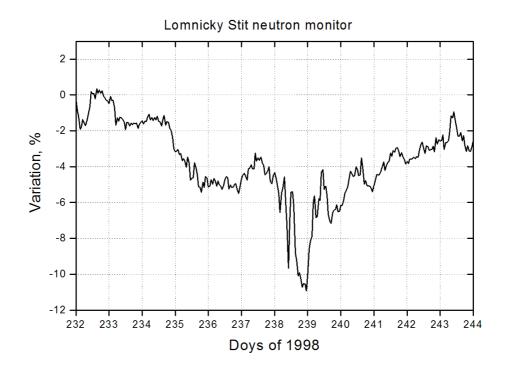


Figure 1. The Forbush decrease, measured on August 26, 1998 by Lomnicky Stit neutron monitor.

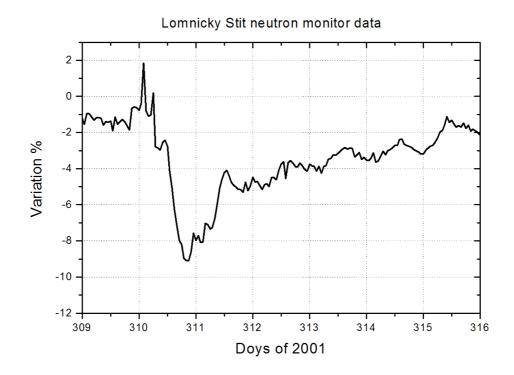


Figure 2. The Forbush decrease, measured on November 6, 2001 by Lomnicky Stit neutron monitor.

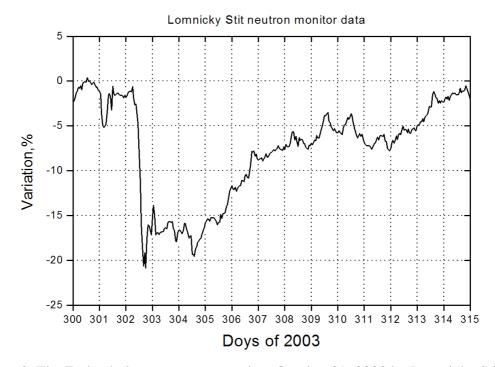


Figure 3. The Forbush decreases, measured on October 29, 2003 by Lomnicky Stit neutron monitor.

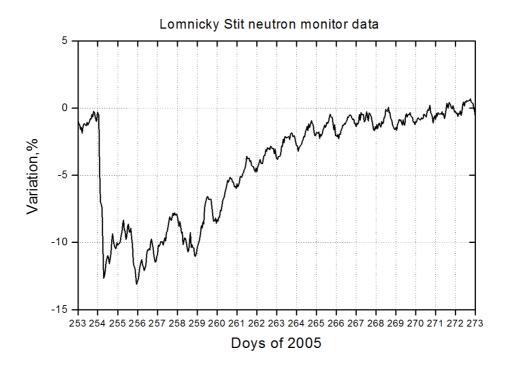


Figure 4. The Forbush decreases, measured on September 11, 2005 by Lomnicky Stit neutron monitor.

Table 1. List of solar flares, radio emissions, velocities of CME and HXR fluxes during large FD periods.

Forbush de Data 1	crease Int FD [%]		Flare Import. Xray/Opt	Coord.	UTmax	F _{nnx} 15.4 GHz		Act.Reg.	V _{cme} [km/s]	Dst [nT]	HX Fx	R E [keV]
06.11.1997	3%	04.11. 06.11.	X2.1/2B X9.4/2B	33W 63W	05.57 11.57	1600 9800	g/GLE	8100	785 1556	-110 (06.11.)		
02.05.1998 06.05.1998	4.4% 9%	02.05. 06.05.	X1.1/3B X2.7/1N	15W 65W	13.41 08.07	1300 1500		8210 8210	938 1099	-192 (04.05.)		
18.08.1998	6.5%	18.08.	X2.8/1N	68E	08.21	4100	g			-192 (04.05.)		
		18.08. 19.08.	X4.9/1B M3.0/SF	87E 80E	22.16 14.12	6900 1100		8307 8307	1830			
22.08.1998	6.5%	19.08 21.08.	X3.9 ?	75E	00.03	5800 1400		8307 8307				
26.08.1998	12%	23.08. 24.08.	M2.2/1N X1/3B	33E 07E	09.31 22.03	1200 1000		8307 8307		-155 (26.08.)		
25.09.1998	9%	23.09.	M7.1/3B	09E	06.56	1000		8340	1110	-207 (25.09.) -149 (08.11.)		
08.11.1998	7%	05.11. 06.11.	M8.4/2B M1.7/1B	18W 32W	19.44 15.10	520 <400		8375 8375	1118	-149 (08.11.)		
25.11.1998	2%	22.11. 22.11.	X3.7/1N X2.5/2N	82W 89W	06.39 16.20	8700 1400	g	8384 8384				
14.12.1998	4%	24.11. 18.12.	X1.0 M8.0/2N	? 64E	02.15 17.18	1400 1200			1749			
									(18.12)		
20.08.1999 22.08.1999		20.08. 21.08.	M9.8/1N M3.7/1B	64E 58E	23.06 16.33	2100 560		8674 8674				
08.06.2000	6%	06.06.	X2.3/3B	18E	15.19	1600		9026	1119			
10.07.2000	3.5% 7.5%	10.07.	M5.7 /2B X1.9/2B	49E 49E	20.12 22.10	2600 1600		9077 9077	1108			
13.07.2000 15.07.2000	7.5%	14.07.	X5.7/3B	07W	10.31	5500	g	9077	1624			
16.07.2000	8.5%	17.07. 25.07.	M2.4/1N M8.0/2B	36E 08W	20.24 02.48	2200 2800		9087 9097	528			
17.09.2000	7%	16.09.	M5.9/2B X2.0/3B	07W 05W	04.13	1200 5500	g	9165	1215	-201(17.09.)		
27.11.2000	5.1%	24.11. 24.11.	X2.3/2B	05W	05.00 15.08	14000	g	9236 9236	1245			
		25.11. 25.11.	M8.2/2N X1.9/2B	50E 23W	01.22 18.30	1700 4600	g g	9240 9236				
29.11.2000	4.9%	26.11.	X4.0/2B	38W	16.43	3900	g	9236	980	-119(29.11.)		
28.03.2001 31.03.2001	5% 4.5%	27.03. 29.03.	M2.2/1N X1.7/1F	33E 12W	16.29 10.11	1300 4000		9401 9393	942	-387(31.03)		
04.04.2001	6%	02.04.	X1.4/1B X20	60W 60W	10.07 21.49	1200 14000	~	9393 9393	2505			
		03.04.	X1.2/1N	83E	03.29	6300	g	9415	1613			
		05.04. 05.04.	M8.4 M5.1/2N	35E 50E	09.17 17.08	1700 4600		9415 9415	1705			
08.04.2001 12.04.2001	5% 9.5%	06.04. 09.04.	X5.6/1F M7.9/2B	31E 04W	19.18 15.26	6700 5900	g	9415 9415	1220 1192			
13.04.2001	6.9%	10.04. 11.04.	X2.3/3B M2.3/1F	09W 27W	05.23 13.17	5000 1200		9415 9415	2411 1103	-271(11.04.)		
15.04.2001	0.270	12.04. 15.04.	X2.0/SF X14/2B	43W 85W	10.17 13.49	6200	CIE	9415 9415	1184 1199	-236(12.04.)		
28.04.2001		25.04.	M2.7 /2N	09W	13.47	5100 520	g/GLE	9433	1006	-114(18.04.) -47 (29.04.)		
28.08.2001 26.09.2001	6.8%	25.08. 24.09.	X5.3/3B X2.6/2B	34W 23E	16.32 10.29	41000 15000		9591 9632	1433 2402	-40 (31.08.)		
21.10.2001		19.10. 22.10.	X1.6/2B X1.2/2B	18W 16E	16.24 17.51	4200 3700		9661 9672	901			
06.11.2001 24.11.2001	10% 9%	04.11.	X1.0/3B M9.9/2N	18W 34W	16.17 23.30	1600		9684 9704	1810 1443	-292(06.11.) -221(24.11.)		
30.12.2001		26.12.	M7.1/1B X3.4	54W 52E	05.07	1800 1400	GLE	9742	1446			
17.07.0000	40/	28.12.			20.17			9767	2216	-58(04.11.)	0.50.105	50.100
17.07.2002 25.07.2002	4% 2.5%	15.07. 20.07.	X3.0/3B X3.3	01W 75E	00.08 21.26	20000 43000	g	10030 10039	1300 1942		0.50.10 ⁶ 1.58.10 ⁸	50-100 50-100
27.08.2002	2.5%	23.07. 24.08.	X4.8/2B X3.1/1F	72E 81W	00.31 01.12	10000 17000	g	10039 10069	2285 1913		2.36.10° 5.00.10 ⁶	300-800 50-100
29.05.2003	6%	28.05.	X3.6	17W	00.23	5300	_	10365	1366		5.00.10	50-100
		27.05. 29.05.	X1.3/2B X1.2/2B	17W 13W	23.06 19.34	1200 2100	g	10365 10365	964 1237		8.50. 10 ⁶	25-50
24.10.2003	4%	31.05. 23.10.	M9.3/2B X5.4/1B	65W 88E	02.22 08.27	8300 10000		10365 10486	1835	-130(29.05.)	11.80.10 ⁶ 13.00.10 ⁶	25-50 12-25
		24.10. 25.10.	M7.6/1N M1.5/SF	72E 20W	02.24 10.29	5100 3800		10486 10484			10.00. 10 ⁶	100-300
28 10 2003	3 5%	26.10. 26.10.	M7.6/2N X1.2/SF	38W 44E	21.38 07.29	1200 6900		10484 10483				
28.10.2005	3.370	26.10.	X1.2/1N	38W 26E	17.30	3100 3900		10484	1537			
29.10.2003	22%	27.10. 28.10.	M5.0/1F X17/4B	38E	09.23 01.0	57000	g/GLE	10486 10486	2459		2.40.10 ⁸	12-25
		29.10.	X10.0/2B	02W	20.47	(11000 -8.8GHz)		10486		-401(30.10.)	0.40. 10 ⁹ 0.90. 10 ⁶	3-6 100-300
04.11.2003	4%	02.11. 03.11.	X8.3/2B X3.9/SF	58W 77W	17.16 10.06	30000 17000	g/GLE g/GLE	10486 10486	2598 1420		0.65. 10 ⁹ 4.80. 10 ⁶	300-800 100-300
		03.11. 04.11.	M3.9/SF X28/3B	79W 83W	15.28 19.45	1400 60000		10486 10486	2657	-89(04.11.)	2.70.10 ⁶ 3.80.10 ⁶	12-25 50-100
22.07.2004	4 5%	16.07.	X3.6/3B	35E	13.52	5600		10649			8.30. 10 ⁶	100-300
22.07.2004	- 1. J∕0	20.07.		33E 34 E	13.32						3.30.10 ⁶ 8.60.10 ⁶	25-50 25-50
26.07.2004	10%	24.07.	M8.6/3B C4.8/SF	11W	13.34	1600		10652 10652			3.80.10°	50-100
08.11.2004	7%	25.07. 06.11.	M7.1/2B M9.3/2N	31W 08E	05.47 01.50	2600 1400		10652 10696	1333	-197(27.07.)	0.50.10 ⁶ 1.64.10 ⁷	100-300 50-100
		07.11. 08.11.	X2.0/2N M2.3/1N	17W 35W	16.27 15.45	3500 1300		10696 10696	2000		1.14.107	100-300
		10.11.	X2.5/3B	49 W	02.10	6800	g	10696	3387	-400(08.11.)	6.10.10 ⁷	50-100
17.01.2005	11%	15.01. 15.01.		06E 05W	04.31 23.08	1600 13000		10720 10720	2861		4.30.10 ⁷	100-300
		15.01.	X1.2/1B	10E	00.43	3000	g				-	
		17.01. 19.01.	X3.8/2B	25W 47W	09.43	17000	g g	10720 10720	2094 2020		4.60. 10 ⁷ 1.79. 10 ⁸	100-300 300-800
21.01.2005 24.08.2005		5 20.01. 22.08.	X7.1/2B	61W 60W	06.44	53000	g	10720 10798	882 2378	-105(22.01.)	3.41.10 ⁸ 3.70.10 ⁷	300-800 100-300
		25.08.	M6.4/1N	79E	17.40		_	10803			0.90 107	100-300
11.09.2005	13%	07.09. 09.09.		89E 64E	17.40 20.02		g g	10808 10808	2257		1.40.10 ⁷ 1.31.10 ⁸	25-50 3-6
		10.09. 10.09.	X1.1	47E 47E	16.39 21.57	1600 1000	g	10808 10808	1893	-120 (10.09.)	5.00.10 ⁶ 6.40.10 ⁷	25-50 50-100
			X1.7	01E	23.23		g	10808		-147(11.09.)	2.80.107	100-300
08.12.2006	2.5% 4.5%	06.12. 13.12.		79E 23 W	10.35 02.40	3550	GLE	10930 10930	1774	-146(15.12.)	5.21.10 ⁷ 1.79.10 ⁸	300-800 100-300
L	H.370	13.12.	AJ.#40	25 W	02.40	5550	OLD.	10930	1//4	-170(13.14.)	1.79.10	100-200